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Abstract: In this study, a new method has been proposed for rule extraction required for a fuzzy classification
system using Cellular Learning Automata Based on Evolutionary Computing (CLA-EC) model. CLA-EC model
is an evolutionary algorithm which is a result of the combination of a cellular learning automata with the
concepts mentioned in evolutionary computing. It has been shown a higher applicability in optimization fields
than CLA and genetic algorithms. Finally, in order to show the applicability of the proposed method, "Iris"
standard database for testing purposes has been used.
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INTRODUCTION

Fuzzy rule base systems are the same as classical rule
base systems that in their "if-then" rules some expressions
of fuzzy logic are substituted for some amounts in
classical logic. In fact, fuzzy logic in these systems is
used as a vehicle to represent the required knowledge for
the target problem solving. One of the most important
applications of fuzzy sets is their use in fuzzy rule base
systems. This feature can consequently result the
suitability of these systems for the problems with
ambiguity and uncertainty. However, there is a
fundamental problem using them and that is the required
knowledge or in other words, their required rules for
problem solving. Fuzzy input space for rule extraction can
be classified in a network form (Jang, 1993; Nozaki et al.,
1996; Wong and Chen, 2000) or in a dispersed or messy
form (Wong and Chen, 1999; Simpson and Fuzzy, 1992).
A dynamic classification has been introduced in (Wong
and Chen, 2000). In this classification, the input space is
firstly classified in a network form, then the center of
membership functions are drawn out by means of that
classification and using the genetic algorithm, one of the
subclasses of the classification made in the previous stage
is chosen as the center of membership function and finally
fuzzy rule base systems are drawn out. PSO algorithm has
been used for fuzzy rule extraction in (Chen, 2006). This
mechanism works faster than the genetic algorithm but it
has the problem of premature convergence and is sensitive
to correct parameters amounts. ANFIS classification
system has been introduced in (Jang, 1993). In this
system, an input space which contains the membership
functions is organized comparatively.

In this study, a new method is introduced for fuzzy
rule extraction using CLA-EC model. CLA-EC model is
a combination of cellular learning automata model and
evolutionary or a heuristic computing. It has been proven
that simple CLA-EC model better than CLA or genetic
algorithms  in  optimization  problem  solving (Masoodi
et al., 2007; Masoodifar et al., 2006).

FORMULATION OF LEARNING AUTOMATA 

The aim is to learn to choose the optimal action (i.e.,
the action with the highest probability of being rewarded)
through repeated interaction on the system. If the learning
algorithm is chosen properly, then the iterative process of
interacting on the environment can be made to result in
selection of the optimal action. Learning Automata
(Narendra and Thathachar, 1989; Najim and Poznyak,
1994) are adaptive decision-making devices operating on
unknown random environments. The Learning Automaton
has a finite set of actions and each action has a certain
probability (unknown for the automaton) of getting
rewarded by the environment of the automaton.

Figure 1 illustrates how a stochastic automaton works
in feedback connection with a random environment.
Learning Automata can be classified into two main
families: fixed structure learning automata and variable
structure learning automata (VSLA). In the following, the
variable structure learning automata is described. A
VSLA is a quintuple <", $, p, T(", $, p)>, where ", $, p
are an action set with s actions, an environment response
set and the probability set p containing s probabilities,
each being the probability of performing every action in
the  current  internal  automaton  state,  respectively. The
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Fig. 1: The interaction between learning automata and
environment

Fig. 2: Pseudocode of variable-structure learning automaton

function of T is the reinforcement algorithm, which
modifies the action probability vector p with respect to the
performed action and received response. Let a VSLA
operate in an environment with $ = {0, 1}. Let n 0 N be
the set of nonnegative integers. A general linear schema
for updating action probabilities can be represented as
follows. Let action i be performed at instance n:
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where a and b are reward and penalty parameters. When
a = b, automaton is called LRP. If b = 0 and 0<b<<a<1, the
automaton is called LRI and LR,P, respectively. Figure 2
show the working mechanism of learning automata.

Cellular learning automata model: A cellular
automaton is an abstract model that consists of large
numbers of simple identical components with a local
interaction. CA is non-linear dynamical systems which
space and time are discrete in. It called cellular, because
it is made up cells like points in the lattice or like squares
of the checker boards and it is called automata, because it
follows a simple rule. One of the models that are used to
develop cellular evolutionary algorithm is a Cellular
Automaton (CA). The simple components act together to
produce complicate patterns of behavior. CA performs
complex computation with high degree of efficiency and
robustness. It is especially suitable for modeling natural
systems that can be described as massive collections of
simple object interacting locally with each other. Cellular

automaton has not only a simple structure for modeling
complex systems, but also it can be implemented easily on
SIMD processors. Therefore it has been used in
evolutionary computing frequently. Mush literatures are
available on cellular automata and its application to
evolutionary computing and the interested reader is
referred to (Mitchell et al., 2000; Wolfram, 1994).

Cellular Learning Automata is a mathematical model
for dynamical complex systems that consists of large
number of simple components. The simple components,
which have learning capabilities, act together to produce
complicated behavioral patterns. A CLA is a CA in which
learning automaton (multiple learning automaton) is
assigned to its every cell. The learning automaton residing
in particular cell determines its state (action) on the basis
of its action probability vector. Like CA, there is a rule
that CLA operate under it. The rule of CLA and the
actions selected by neighboring LAs of any particular LA
determine the reinforcement signal to the LA residing in
that cell. In CLA, the neighboring LAs of any particular
LA constitute its local environment, which is
nonstationary because it varies as action probability
vector of neighboring LAs vary.

The operation of cellular learning automata could be
described as follows: At the first step, the internal state of
every cell specified. The state of every cell is determined
on the basis of action probability vectors of learning
automata residing in that cell. The initial value may be
chosen on the basis of experience or at random. In the
second step, the rule of cellular automata determines the
reinforcement signal to each learning automaton residing
in that cell. Finally, each learning automaton updates its
action probability vector on the basis of supplied
reinforcement signal and the chosen action. This process
continues  until  the desired result is obtained (Meybodi
et al., 2001; Meybodi et al., 2003-2004).

Cellular learning automata based on evolutionary
computing (CLA-EC): In CLA-EC, similar to other
evolutionary algorithms, the parameters of the search
space are encoded in the form of genomes. Each genome
has two components, model genome and string genome.
Model genome is a set of learning automata. The set of
actions selected by the set of learning automata
determines the second component of the genome called
string genome. For each cell, based on a local rule, a
reinforcement signal vector is generated and given to the
set of learning automata residing in that cell. Each
learning automaton based on the received signal update its
internal structure according to a learning algorithm. Then,
each cell in CLA-EC generates a new string genome and
compares its fitness with the fitness of the string genome
of the cell. If the fitness of the generated genome is better
than the quality of the sting genome of the cell, the
generated string genome becomes the string genome of
that cell. This process of generating string genome by the
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Fig. 3: Pseudocode of CLA-EC

cells  of   the   CLA-EC  is   iterated  until a termination
condition is satisfied. The main issue involved in
designing a CLA-EC for a problem is finding a suitable
genome representation and fitness function and the
parameters of CLA such as the number of cells
(population size), topology and the type of the learning
automata for each cell.

Evolutionary algorithms as the one described
algorithm can be used in any arbitrary finite discrete
search space. To simplify the algorithm, we assume that
sight search space is a binary finite search space. So the
optimization problem can be presented as follows.
Assume f: {0,1}m ÷R be a real function that is to be
minimized. In order to use CLA-EC for the optimization
function f first a set of learning automata is associated to
each cell of CLA-EC. The number of learning automata
associated to a cell of CLA-EC is the number bits in the
string genome representing points of the search space of
f. Each automaton has two actions called action 0 and 1.
Then the following steps will be repeated until a
termination criterion is met.

C Every automata in a cell i chooses one of its actions
using its action probability vector

C Cell i generates a new string genome, newi, by
combining the actions chosen by the learning
automata of cell i. The newly generated string
genome is obtained by concatenating the actions of
the automata (0 or 1) associated to that cell. This
section of algorithm is equivalent to learning from
previous self-experiences.

C Every cell i computes the fitness value of string
genome newi; if the fitness of this string genome is
better than the one in the cell then the new string
genome newi becomes the string genome of that cell.
That is:
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C Se cells of the neighboring cells of the cell i are
selected. This Selection is based on the fitness value
of the neighboring cells according to truncation
strategy. This process is equivalent to mating in the
nature. Note that mating in the context of proposed
algorithm is not reciprocal, i.e., a cell selects another
cell for mating but necessarily vice versa.

C Based on selected neighboring cells a reinforcement
vector is generated. This vector becomes the input for
the set of learning automata associated to the cell.
This section of algorithm is equivalent to learning
from experiences of others. Let Ns(i) be set selected
neighbors of cell i. Define:
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$i,j , the reinforcement signal given to learning automaton
j of cell i, is computed as follows:
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where u (.) is a step function. The overall operation of
CLA-EC is summarized in the algorithm of Fig. 3. The
interested reader is referred to (Rastegar and Meybodi,
2004).

FUZZY CLASSIFICATION STRUCTURE 

For this purpose, the structure of the Fuzzy
classification system presented in (Wong and Chen, 2000)
is used. In this section we will describe it briefly. 

Consider an M-class classification problem with n
training patterns {Xt, yt}, t = 1, 2, .., n, where  Xt = (xt1, xt2,
…, xtm) is the input vector corresponding to the t-th
training pattern and yt, {1, 2, …, M} represents that the t-
th pattern belongs to the yt-th class. A rule base of a fuzzy
system can be expressed as follows:

(7) 
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where X denotes the input vector(x1, x2,…, xm), di denotes
the number of fuzzy sets for the input variable xi, A(i,j) is
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the ji-th fuzzy set of the i-th input variable xi in the
premise part and y(j1, j2 ,…, jm) , {1, 2, …, M} determines that
X belongs to the y(j1, j2, …, jm) -th class and CF(j1, j2 ,…, jm)

denotes the grade of certainty of the corresponding fuzzy
rule R(j1, j2 ,…, jm) . In (Wong and Chen, 2000), the
membership function of the fuzzy set A(I, j)  is described
by:
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where c(I, ji) is the center of the membership function,W i ji
l
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is the left width value of the membership function
and  is the right width value of the membershipW i ji
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function. Therefore, the shape of the membership function
corresponding to the fuzzy set in the premise part is
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the t-th input (xt1, xt2, …, xtm)  is given, the firing strength
of the y(j1, j2, …, jm) - th rule is calculated by:
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rules. On the other hand, the parameters y(j1, j2 ,…, jm)   and
CF y(j1, j2, …, jm) in the consequent part of the corresponding
fuzzy rule R(j1, j2, …, jm) are determined in the following
procedure.

Procedure 1: Generation of fuzzy rules:
Step 1: Calculate $CT  of each class T , {1, 2, …, M}   
              for the fuzzy rule R(j1, j2, …, jm) as follows:
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Step 3: Determine the grade of certainty CF(j1, j2 ,…, jm)  
of the fuzzy rule R(j1, j2 ,…, jm)    by
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In this procedure, the consequent parameter y(j1,j2 ,…,jm)

 determined by the largest sum of :t (j1,j2 ,…,jm)  over the M
classes. 

By the above training procedure, a rule set S is
determined as:

S = { R(j1, j2, …, jm)|ji = 1, 2, …, di ,i = 1, 2, …, m}   

when a rule set S is given, a new pattern (xt1, xt2 ,…, xtm)
is classified by the following procedure based on the
fuzzy rules in S.

Procedure 2: Classification of a new pattern:
Step 1: Calculate  "CT  of each class T ,{1, 2,…, M}   as

follows:

(13)
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Step 2: Find Class Y such that

" CY = max{ "C1, "C2, …, "CM} (14)

where the value of Y represents the new pattern belongs
to the Y-th class.

According to the above description, the parameter set
containing of the premise parameters determines a fuzzy
classification system. Thus, different premise parameter
sets determine different fuzzy classification systems
resulting in different performances. In the next section,
each individual in CLA-EC is represented as a fuzzy
classification system and a method based on CLA-EC is
proposed to select an appropriate fuzzy classification
system to maximize the number of correctly classified
patterns and minimize the number of fuzzy rules.

Using CLA-EC for rule extraction: Suppose our
population is a collection of L chromosome, i.e., P = {P1,
P2, …, PL}. When:

 
 

P p p p P p p p p

k L

K k k
b
k k k

b
k

m
k

mbm
k



11 12 1 1 21 22 2 2 2

1 2

, ,..., , , ,..., ,..., ,...,

, ,...,

are 0 or 1 and is corresponded by a membershippij
k

function. Membership function is selected

correspondingly with ,when a  is 1, otherwise is notpij
k pij

k

selected. For instance, indicatesp p pk k
b
k

11 12 1 1
, , ... ,

corresponding membership functions are characterized by
1st  feature. each one of cells in CLA-EC according to
Fig. 4 contains a Pk as string genome.
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Fig. 4: Each one of cells in CLA-EC contains a Pk as string
genome

Fig. 5: Allocating learning automata to membership functions
and selecting all functions by automata

Fig. 6: Allocating learning automata to membership functions
and selecting some functions by automata

A learning automata is being responsible for making
string genome bits zero or one, or in other words selecting
or non-selecting each membership function as shown in
Fig. 5 and 6.

If one membership function is not considered,
neighboring functions will spread that much to fill the
empty space.

Therefore, if automata select 0, the related
membership function will not be considered. But the
membership function will be considered if automata select
1. Each automaton, considering the operation that it
selects and the environment feedback, gradually learns
whether its corresponding membership function is useful.

Here, By means of the input vectors Xt (xt1, xt2, …, xtm), t
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membership function with respect to the i-th variable can
be determined by (Wong and Chen, 2000):
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taking a value "1" with respect to the i-th input space. In
order to determine the left and right width values of the
membership function of the fuzzy set A(i,ji) i, {1, 2, …,m}ji

, {1, 2, …,di}, we choose a constant " 0[0,1]   so that the
membership function values of A(i, ji)(c(i ,ji – 1) )   and A(i, ji)(c(i
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Therefore, the left and right width values of each
membership function with respect to the i-th input
variable can be, respectively calculated by:
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constant to control the overlapping of two adjacent
membership functions. By means of the preceding
process, the number and shapes of membership functions
in the premise part are constructed to partition the input
space and the number of fuzzy rules is determined.

An individual determines a fuzzy classification
system. In order to construct an appropriate fuzzy
classification system to maximize the number of the
correctly classified patterns and minimize the number of
fuzzy rules, the fitness function is defined as follows:
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Fig. 7: Correct classification percent

Fig. 8: Members of rule extraction graph

Fig. 9: Graph of created membership function with learning
rate of 0.001

where S(pk) is a rule set corresponding to the individual
pk, NCP(S(pk)) denotes the number of correctly classified
patterns by S(pk), |S(pk)| denotes the number of fuzzy rules
by S(pk), WNCP is the weight of NCP(S(pk)) and WS is the
weight of |S(pk)|. In general, the classification power of a
classification system is more important than its
compactness. Therefore, the weights should be specified
as 0<WS<<WNCP . In this way, the fitness function will
guide the individual to find an appropriate fuzzy
classification system to satisfy the desired objective. That
is,  the  final  selected  fuzzy  classification system using

Fig. 10: Graph of created membership function with learning
rate of 0.01

Fig. 11: Graph of created membership function with learning
rate of 0.02

CLA-EC can simultaneously achieve the combinatorial
objectives for maximizing the number of correctly
classified patterns and minimize the number of fuzzy
rules.

Experimental experience: A linear CLA-EC with
neighboring  radius  of  2  and  variable learning  rate  has
been   used   in  experiments  and  in  each  cell  learning
automata  is  LRI  type.  We  have  used Iris data base for
doing experiments. This data base includes 150 data
which each data owns 4 features and belongs to one of
these  3  classes:  Iris  Setosa,  Iris  Versicolour  and  Iris
Virginica.  There  are  50 data in each class. One of these
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Table 1: Values of parameters used in experiments
Values Parameters
Number of cells 20
The length of bits for each input variable (bi) 4
Neighboring radius 2
Number of selected cells 2
Overlapping control constant (") 0.5
Wncp , Ws 0.3,0.7
Learning rate 0.001,0.01,0.02
Number of generations (N) 100
Number of repeat 20

Table 2: Comparing CLA-EC efficiency with other algorithms used in
classification

Number Number of correctly
Algorithms of rules classifiend patterns (%)
ANFIS 81 99.5
Pruning 28 93.3
Multi-rule-table 597 94.3
PSO-based 5 96.8
GA-based 10 90.67
LA-based 11 93.63
CLA-EC, LR = 0.001 12 89.75
CLA-EC, LR = 0.01 8 92.31
CLA-EC, LR = 0.02 8 94.48

classes is clearly separated from others linearly and the
other 2 classes can be distinguished from each other non-
linearly. The rest of parameters are shown in Table 1.

Results of experiments using CLA-EC model with
learning rate of 0.001, 0.01 and 0.02, respectively are
shown in Fig. 7 to 11. As it is observed, increasing
learning rate in the model improves algorithm efficiency
and increases its speed. Appointing learning rate
parameter value in the model is based on the problems
dealing with classification we can assume higher value for
the parameter to speed up the algorithm. If data’s
structures and dimensions that are to classify are not very
complex. But if their structures and dimensions are
complex, we must decrease learning rate, other algorithm
get closer answer more carefully.

Table 2 compares CLA-EC model efficiency and
other algorithms used in Iris data base classification. And
results indicate the model efficiency over other similar
models and methods.

CONCLUSION

In this study, a new method has been proposed for
rule extraction using Cellular Learning Automata Based
on Evolutionary Computing (CLA-EC) model. The CLA-
EC has a number of properties that make it superior over
other evolutionary models. A highly degree of diversity is
apparent in the early generations created by having the
probabilities initially random and only slightly biased in
the early iteration. In other hand with respect to the fact
that interactions between cells (genomes) are local the
probability of stuck in local optima can be decreased. The
empirical results have shown that the proposed algorithm
is an available and effective approach for rule extraction
problem.
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