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Abstract: This study present the optimal design of OFD (OFD) controller for static synchronous compensator
(STATCOM) connected to a power system, in order to increase the damping of low frequency
electromechanical oscillations. The design process is converted to an optimization problem with the time
domain-based objective function which is solved by a Quantum-behaved Particle Swarm Optimization (QPSO)
technique that has fewer parameters and stronger search capability than the Classical Particle Swarm
Optimization (CPSO), as well as is easy to implement. To guarantee the robust performance of the OFD
controller, the design process takes into account a wide range of operating conditions and system
configurations. The simulation results demonstrate the effectiveness of proposed controller in comparison with
designed Classical PSO (CPSO) based STATCOM controller. 
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INTRODUCTION

Electromechanical oscillations in power systems are
a problem that has been challenging engineers for years.
These oscillations may be very poorly damped in some
cases, resulting in mechanical fatigue at the machines and
unacceptable power variations the across the important
transmission lines. For this reason, the applications of the
controllers to provide better damping for these oscillations
are of utmost importance (Ramos et al., 2005). 

In recent years, with the rapid development of power
electronics, Flexible AC Transmission System (FACTS)
devices have been proposed and implemented in high
voltage transmission networks. The FACTS devices can
be used normally steady-state control of a power system
and enhance system stability through improved damping
of power swings (Klein et al., 1995). However, a
supplementary controller may be designed for the FACTS
devices to increase the damping of electromechanical
oscillatory modes, while meeting the primary goal of the
device on power system. The FACTS controllers enhance
both dynamic and static performance of power system and
thus improvement in overall stability (Noroozian and
Andersson, 1993). 

The STATCOM is based on the principle that a
voltage-source inverter generates a controllable AC
voltage source behind a transformer-leakage reactance so
that the voltage difference across the reactance produces
reactive power exchange between the STATCOM and the
transmission network (Hingorani and Gyugyi, 1999;
Wang, 2003). It is reported that STATCOM can offer a
number of performance advantages for reactive power
control applications over the conventional approaches,

such as Static Var Compensators (SVC), because of its
greater reactive current output capability at depressed
voltage, faster response, better control stability, lower
harmonics and smaller size, etc. 

Several trials have been reported in the literature to
dynamic models of STATCOM in order to design suitable
controllers for AC, DC voltage and damping controls.
(Wang, 2003) presents the establishment of the linearized
Phillips-Heffron model of a power system installed with
a STATCOM. The author has not presented a systematic
approach for designing the damping controllers. Further,
no effort seems to have been made to identify the most
suitable STATCOM control parameter, in order to arrive
at a damping controller. Fuzzy-logic-based controllers
have been used for controlling a STATCOM (Moris et al.,
2003). The performance of such controllers can further be
improved by adaptively updating their parameters. Also,
although using the robust control methods (Rahim and
Kandlawala, 2004; Armansyah et al., 2002), the
uncertainties are directly introduced to the synthesis, but
due to the large model order of power systems the order
resulting controller will be very large in general, which is
not feasible because of the computational economical
difficulties in implementing. An approach based on a zero
set concept to the problem of the STATCOM state
feedback controller design is presented in (Spitsa et al.,
2010). This method allows one to calculate a complete set
of the admissible state feedback gains that place closed-
loop poles into a pre-specified region in the complex
plane.

In this study, for the simplicity of practical
implementation of the controllers, output feedback control
with feedback signals available at the location of the each
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controlled  device  is  most  favorable  (Lee, 2005; Chen
et al., 1998; Jalilzadeh et al., 2009). The problem can be
stated as follows: given a system, find an output feedback
gains so that the closed-loop system is stable. The output
feedback problem is important in its own right, because
these controllers are less expensive to be implemented
and more reliable in practice (Huang and Nguang, 2007).
The aim of this paper is to tune of output feedback gains
for the STATCOM based controllers using the quantum
PSO technique. The QPSO algorithm (Coelho, 2008) is
depicted only with the position vector without velocity
vector, which is a simpler algorithm and the results show
that QPSO performs better than classical PSO and is a
promising algorithm due to its global convergence
guaranteed characteristic (Sun et al., 2008; Sun et al.,
2005; Jalilzadeh et al., 2009).

In this study, the problem of robust OFD controller
design is formulated as an optimization problem and
QPSO technique is used to solve it. The proposed design
process for controller with the output feedback scheme is
applied to a single-machine infinite-bus power system.
Since only local and available states ()T, )Pe and )Vt)
are used as the inputs of each controller, the optimal
design of controller can be accomplished. The
effectiveness of the proposed controller is demonstrated
through nonlinear time-domain simulation studies and
some performance indices. 

REVIEW OF CLASSICAL PSO AND
QUANTUM PSO

Classical PSO: The proposal of PSO algorithm was
propounded by several scientists who developed bio-
inspired computational simulations of the movement of
organisms such as flocks of birds and schools of fish
(Kennedy, 1997). Such simulations were heavily based on
manipulating the distances between particles, i.e., the
simultaneity of the behavior of the swarm was seen as an
effort to keep an optimal distance between them. This
optimization technique can be used to solve many of the
kinds of problems as Genetic Algorithm (GA), and does
not suffer from some of GA difficulties. It has also been
found to be robust in solving problem featuring non-
linearing, non-differentiability and high-dimensionality
(Jalilzadeh et al., 2009). 

The PSO begins with a population of random
solutions ‘‘particles’’ in a D-dimension space. The ith
particle is represented by Xi = (xi1, xi2, . . . , xiD). Each
particle keeps track of its coordinates in hyperspace,
which are associated with the fittest solution it has
achieved so far. The value of the fitness for particle i
(pbest) is also stored as Pi = (pi1, pi2, . . . , piD). The global
version of the PSO keeps track of the overall best value
(gbest), and its location, obtained thus far by any particle
in the population. PSO consists of, at each step, changing
the  velocity  of  each particle toward its pbest and gbest

Fig. 1: Flowchart of the proposed PSO technique

according to (1). The velocity of particle i is represented
as Vi = (vi1, vi2. . . viD). Acceleration is weighted by a
random term, with separate random numbers being
generated for acceleration toward pbest and gbest. The
position of the ith particle is then updated according to (2)
(Jalilzadeh et al., 2009; Poli et al., 2007):

(1)
v w v c rand Pi x

c rand P x
id id d id

gd id

     
   

1

2

() ( )

( ) ( )

(2)x x cvid id id 

where, Pid and Pgd are pbest and gbest. The positive
constants c1 and c2 are the cognitive and social
components that are the acceleration constants responsible
for varying the particle velocity towards pbest and gbest,
respectively. Variables r1 and r2 are two random functions
based on uniform probability distribution functions in the
range [0, 1]. The use of variable w is responsible for
dynamically adjusting the velocity of the particles, so it is
responsible for balancing between local and global
searches, hence requiring less iteration for the algorithm
to converge (Poli et al., 2007). Figure 1 shows the
flowchart of the PSO algorithm.
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Quantum PSO: In classical PSO technique, a particle is
depicted by its position vector xi and velocity vector vi,
which determine the trajectory of the particle. The
dynamic behavior of the particle is widely divergent form
that of that the particle in CPSO systems in that the exact
values of xi and vi cannot be determined simultaneously.
In quantum world, the term trajectory is meaningless,
because xi and vi of a particle cannot be determined
simultaneously according to uncertainty principle.
Therefore, if individual particles in a PSO system have
quantum behavior, the PSO algorithm is bound to work in
a different fashion (Coelho, 2008). In the quantum model
of a PSO called here QPSO, the state of a particle is
depicted by wave function Q(x, t) instead of position and
velocity. Employing the Monte Carlo method, the
particles move according to the following iterative
equation (Sun et al., 2005):

(3)
x t p Mbest x t In u if k

x t p Mbest x t In u if k

( ) .| ( )|. ( / ) .

( ) .| ( )|. ( / ) .

    
    

1 1 05

1 1 05




where u and k are values generated according to a
uniform probability distribution in range [0, 1], the
parameter $ is called Contraction-Expansion (CE)
Coefficient, which can be tuned to control the
convergence speed of the particle. In the QPSO, the
parameter $ must be set as $<1.782 to guarantee
convergence of the particle (Sun et al., 2008). Thus the
Eq. (3) is the fundamental iterative equation of the
particle’s position for the QPSO. Moreover, unlike the
PSO, the QPSO needs no velocity vectors for particles at
all, and also has fewer parameters to control (only one
parameter $ except population size and maximum
iteration number), making it easier to implement. Where,
Mbest called Mean best position is defined as the mean of
the pbest positions of all particles. That is given as
follows:

(4)Mbest
N

p t
idd

N





1

1
( )

Trajectory analyses in (Sun et al., 2005) demonstrated the
fact that convergence of the PSO algorithm may be
achieved if each particle converges to its local attractor,
p defined at the coordinates:

(5)p c p c P c cid gd  ( ) / ( )1 2 1 2

The procedure for implementing the QPSO is given by the
following steps (Coelho, 2008):

Fig. 2: SMIB power system equipped with STATCOM

Step 1: Initialization of swarm positions: Initialize a
population (array) of particles with random
positions in the n-dimensional problem space
using a uniform probability distribution function.

Step 2: Evaluation of particle’s fitness: Evaluate the
fitness value of each particle.

Step 3: Comparison to pbest (personal best): Compare
each particle’s fitness with the particle’s pbest.
If the current value is better than pbest, then set
the pbest value equal to the current value and the
pbest location equal to the current location in n-
dimensional space.

Step 4: Comparison to gbest (global best): Compare
the fitness with the population’s overall previous
best. If the current value is better than gbest,
then reset gbest to the current particle’s array
index and value.

Step 5: Updating of global point: Calculate the Mbest
using Eq. (4).

Step 6: Updating of particles’ position: Change the
position of the particles according to Eq. (3),
where c1 and c2 are two random numbers
generated using a uniform probability
distribution in the range [0, 1].

Step 7: Repeating the evolutionary cycle: Loop to Step
2 until a stop criterion is met, usually a
sufficiently good fitness or a maximum number
of iterations (generations).

TEST SYSTEM WITH STATCOM

A Single Machine Infinite Bus power (SMIB) system
installed with a STATCOM, as shown in Fig. 2, are
considered. The system data is listed in the Appendix.

The system consists of a Step Down Transformer
(SDT) with a leakage reactance XSDT, a three phase
GTO-based voltage source converter, and a dc capacitor
(Wang, 2003).

Problem formulation: The dynamic model of the
STATCOM is required in order to study the effect of the
STATCOM  for  enhancing  the  small  signal  stability  of
the power system. The voltage source converter of
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STATCOM  generates  a  controllable AC voltage source
vo(t) = V0sin (wt-N) behind the leakage reactance. The
voltage difference between the STATCOM bus AC
voltage, vL(t) and v0(t) produces reactive power exchange
between the STATCOM and the power system, which can
be controlled by adjusting the magnitude V0 and the phase
N. The dynamic relation between the capacitor voltage
and current in the STATCOM circuit are expressed as
(Rahim and  Kandlawala, 2004):

(6)I I jILo Lod Loq  ,

(7)V cV j cVo dc dc   (cos sin )  

(8) ( cos sin )V
I

C

c

C
I Idc

dc

dc dc
Lod Log   

where for the PWM inverter c = mk and k is the ratio
between AC and DC voltage depending on the inverter
structure, m and c are the modulation ratio and phase
defined by the PWM. The Cdc is the dc capacitor value
and Idc is the capacitor current while iLod and iLoq are the d-
and q-components of the STATCOM current,
respectively. The dynamics of the generator and the
excitation system are expressed through a fourth order
model is given as (Jalilzadeh et al., 2009):

(9) ( )   0 1

(10)   ( ) /P P D Mm e 

(11)    E E E Tq q fd do( ) /

(12) ( ( )) /E E K V V Tfd fd a ref t a   

The expressions for the d-q axes currents in the
transmission line and STATCOM, respectively, are given
as follows (Rahim and Kandlawala, 2004):
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The XT, xd! and xq are the transmission line reactance,
d-axis transient reactance, and q-axis reactance,
respectively.  A linear dynamic model is obtained by
linearizing the nonlinear model round an operating
condition. The Phillips-Heffron model of the power
system with FACTS devices is obtained by linearizing
nonlinear equations of the power system around an
operating condition. The linearized model of power
system as shown in Fig. 2 is given as follows:

(17)  ,   0

(18)   ( ) /   P D Me
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 

V K K E K v

K c K

t q Vdc dc

vc v

  
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The K1, K2…K9, Kpu ,Kqu and Kvu are linearization
constants. The state-space model of power system is given
by:

(25)x Ax Bu 
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where, the state vector a, control vector u, A and B are:
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Structure of the OFD controller: A power system can
be described by a Linear Time Invariant (LTI) state space
model as follows (Lee, 2005):

(27)x Ax Bu 

(28)y Cx

where x, y and u denote the system linearized state, output
and input variable vectors, respectively. The A, B and C
are constant matrixes with appropriate dimensions which
are dependent on the operating point of the system. The
eigenvalues of the state matrix A that are called the
system modes define the stability of the system when it is
affected by a small interruption. As long as all
eigenvalues have negative real parts, the power system is
stable when it is subjected to a small disturbance. An
output feedback controller has the following structures:

(29)u Gy 

Substituting (29) into (28) the resulting state equation is:

(30)x A xC

where, Ac is the closed-loop state matrix and is given by:

(31)A A BGCC  

Only the local and available state variables )T, )Pe

and )Vt are taken as the input signals of each controller,
so the implementation of the designed stabilizers becomes
more feasible. By properly choosing the feedback gain G,
the eigenvalues of closed-loop matrix Ac are moved to the
left-hand side of the complex plane and the desired
performance of controller can be achieved.

QPSO based OFD controller: The proposed controller
must be able to work well under all the operating
conditions where the improvement in damping of the
critical modes is necessary. Since the selection of the
output feedback gains for mentioned STATCOM based
damping controller is a complex optimization problem.
Thus, to acquire an optimal combination, this paper
employs QPSO (Coelho, 2008) to improve optimization
synthesis and find the global optimum value of objective
function. For our optimization problem, objective function
is time domain-based objective function (Jalilzadeh et al.,
2009):

(32)J tdti
tsim

i

Np
 


| |.

01

where, the tsim is the time range of simulation and NP is the
total number of operating points for which the
optimization is carried out. It is aimed to minimize this
objective function in order to improve the system
response in terms of the settling time and overshoots. The
design problem can be formulated as the following
constrained optimization problem, where the constraints
are the controller parameters bounds:

Minimize J subject to:

(33)

G G G

G G G

G G G

1 1 1

2 2 2

3 3 3

min max

min max

min max

 

 

 

Typical ranges of the optimized parameters are [100-
200] for G1 and [0.01-10] for G2 and G3.The optimization
of controller  parameters is carried out by evaluating the
objective function as given in (32), which considers a
multiple of operating conditions. The operating conditions
are considered as:

C Base case: P = 0.80pu, Q = 0.2 pu and XL=0.4
pu.(Nominal loading)

C Case 1: P = 0.2 pu, Q = 0.01 and XL = 0.4 pu.(Light
loading)

C Case 2: P = 1.20 pu, Q = 0.4 and XL = 0.4 pu. (Heavy
loading)

C Case 3: The 20% increase of line reactance XL at
nominal loading condition
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Table 1: Optimal parameters of the OFD controllers
C based controller N based controller

Controller ----------------------------- ------------------------------
parameters QPSO CPSO QPSO CPSO
G1 161.56 189.25 114.34 105.05
G2 2.5320 2.9108 1.1988 1.2334
G3 1.0750 0.8898 1.2550 1.7611

Fig. 3: Response of the system without controller

C Case 4: The 20% increase of line reactance XL at
heavy loading condition

In this study, in order to acquire better performance,
number of particle, particle size, number of iteration and
$ is chosen as 30, 3, 50 and 1.5, respectively. It should be
noted that QPSO algorithm is run several times and then
optimal set of STATCOM controller parameters is
selected. The final values of the optimized parameters are
given in Table 1.

SIMULATION RESULTS

To assess the effectiveness and robustness of the
proposed controllers, the performance of the proposed
controller under transient conditions is verified by
applying a 6-cycle three-phase fault at t = 1 sec, at the
middle of the L3 transmission line. The fault is cleared by
permanent tripping of the faulted line. The response of the
system without controller is shown in Fig. 3. When
STATCOM is not installed it can be seen that system is
unstable. The system response to this disturbance of
generator at nominal, light and heavy loading conditions
due to  designed  controller  based  on  the  C and  N are
shown in Fig. 4 and 5. It is also clear that the system
damping with the proposed method based tuned
STATCOM based controller are significantly improved.
The performance of the proposed method is compared to
that of the classical method. It can be seen that the QPSO
based designed controller achieves good robust
performance, provides superior damping in comparison
with the CPSO method. This illustrates the potential and
effectiveness of the proposed design approach to obtain
an optimal set of output feedback controller gains.

Fig. 4: Dynamic responses for )T at (a) nominal (b) light and
(c) heavy loading; solid (QPSO based N controller) and
dashed (CPSO based N controller)

To demonstrate performance robustness of the
proposed method, two performance indices: the Integral
of the Time multiplied Absolute value of the Error (ITAE)
and Figure of Demerit (FD) based on the system
performance  characteristics  are  defined  as  (Jalilzadeh
et al., 2009):

(34)
ITAE tdt

FD OS US T

tsim

s



    

10000

200 1000

0

2 22

| |.

( ) ( )



where, speed deviation ()T), Overshoot (OS),
Undershoot (US) and settling time of speed deviation of
the machine is considered for evaluation of the ITAE and
FD indices. It is worth mentioning that the lower the value
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Fig. 5: Dynamic responses for )T at (a) nominal (b) light and
(c) heavy loading;  solid (QPSO based C controller) and
dashed (CPSO based C controller)

Table 2: Values of performance index ITAE
Nominal Light Heavy

Type of -------------------- ------------------ ---------------------
algorithm C N C N C N
CPSO 34.000 26.460 18.550 21.87 18.04 17.16
QPSO 33.328 26.050 14.931 20.19 17.68 17.03

of these indices is, the better the system response in terms
of time-domain characteristics. Numerical results of
performance robustness for nominal, light and heavy
loading    cases   are    given   in  Table  2   and  3.  This
demonstrates that the overshoot, undershoot, settling time
and speed deviations of the machine are greatly reduced

Table 3: Values of performance index FD
Nominal Light Heavy

Type of --------------------- -------------------- ---------------------
algorithm C N C N C N
CPSO 347.5 151.31 130.07 218.79 144.42 102.01
QPSO 310.1 133.37 104.34 183.12 108.05 93.108

by applying the proposed QPSO based tuned output
feedback controllers.

CONCLUSION

This study has discussed OFD controller design for
STATCOM with multiple operating points. The design
problem of the robustly selecting output feedback
controller parameters is converted into an optimization
problem which is solved by a quantum PSO with the time
domain-based objective function. Only the local and
available state variables )T, )Pe and )Vt are taken as the
input signals of each controller, so the implementation of
the designed stabilizers becomes more feasible. The
effectiveness of the proposed controllers for improving
dynamic stability has been demonstrated on a single
machine infinite bus. Numerical results have shown that
the proposed damping controller can ensure the
simultaneous stability and adequate damping for the
multiple operating points. The system performance
characteristics in terms of ITAE and FD indices reveal
that using the proposed QPSO based controllers the
overshoot, undershoot, settling time and speed deviation
of rotor are greatly reduced at various operating
conditions.

Appendix: The nominal parameters of the system are listed in Table 4.

Table 4: System parameters
M = 8 MJ/MVA Td!o = 5.44 s Xd = 1pu

Generate Xq = 0.6 p.u Xd! = 0.3 p.u D = 0
Excitation system Ka = 50 Ta = 0.5 s
Transformers Xr = 0.1 pu XSDT = 0.1 pu
Transmission line Xq = 0.4 pu
DC link Parameter VDC = 1 pu CDC = 1pu
STATCOM parameter C = 0.25 N = 52!

Ks = 1 Ts =  0.05
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