AC Induction Motor (ACIM) Control using a Digital Signal Controller (DSC)

D. Diarisso, I. Ly, G. Sow, O. Sow, I. Gaye, F.I. Barro and G. Sissoko
Faculty of Science and Technology, University Cheikh Anta Diop, BP 5005, Dakar-Fann, Senegal
Polytechnique School of Thies, EPT, Thies, Senegal
Superior School of Dakar, ESP, Senegal

Abstract: This study describes the use of a digital signal controller for an AC Induction Motor (ACIM) control through a three phase inverter. The main feature of the work is the simplicity of the hardware-only a 16 bit fixed point microcontroller with associated external conditioning integrated circuits. This lead to an extremely simple, low-cost and reliable system. A laboratory inverter prototype using a Microchip DSPIC33FJ128MC804 digital signal controller is developed and typical results are presented.

Keywords: ACIM, Digital Signal Controller (DSC), Pulse Width Modulation (PWM)

INTRODUCTION

Pulse Width Modulation (PWM) techniques of various forms are available in the literature for the control of voltage, frequency and spectral response of three phase inverters (NEC, 2004; Zhou and Wang, 2002; Copeland et al., 1999). Microprocessors (μP), DSPs and μcontrollers are used for implementation of PWM schemes efficiently (NEC, 2004; Copeland et al., 1999; Salam and Salim, 2001). The PWM switching points are computed on-line and the PWM patterns are realized using the μP (or DSP), I/O interfaces and Programmable Timers (Microchip Technology Inc, 2009; Zambada and Microchip Technology Inc, 2005; Kumar et al., 2010; Swamy and Kumar, 2008).

In this study, a Digital Signal Controller (DSC) is used to generate the Pulse Width Modulation (PWM) pulses for the control of an AC Induction Motor (ACIM) by a three-phase inverter (Kumar et al., 2010; Swamy and Kumar, 2008; Islam et al., 2004; Buso and Mattavelli, 2006). The used DSC will first be described, followed by the implementation of the PWM pulses; the resulting signals are then presented.

MICROCHIP DSPIC33FJ128MC804

This study describes the use of Microchip DSPIC33FJ128MC804 to generate the Pulse Width Modulation (PWM) pulses for a three-phase inverter system.

There are numerous internal peripherals and the details on this DSC can be found in (Microchip Technology Inc, 2009). The main peripheral that will be utilized in the waveform generation is the 6 channels PWM module also called Motor Control PWM module (MCPWM) which is briefly described. Note that there are two Motor Control PWM modules noted MCPWMx. In the following, we refer only to MCPWM1 (Fig. 1) since MCPWM2 has just one pair of PWM channels.

MCPWM1 can be divided into the following units (Zambada and Microchip Technology Inc, 2005): the 16 bit time base for all PWM channels, the duty generator and the dead time control for each PWM channel, the PWM override logic.

Duty cycle generators create pulses that contain the preprogrammed duty cycle information. Dead-time units offset the pulses to prevent shoot through in driving the inverter transistors. PWM override logic allows the output signals to be modified based on fault conditions and/or program instructions. For example, an output signal from this block can be inverted if negative polarity is selected or can be forced to a programmed value in the OVDCON register.

The DSPIC33FJ128MC804 allows the generation of six independent PWM signals; Fig. 2 illustrates the output of a centre aligned PWM. The width of the pulse is determined by the content of the pulse width register (PxDCy), where y denotes a particular PWM channel. In a centre-aligned PWM the value in the pulse width register affects both edges of the output signal symmetrically, whereas in the edge-aligned, one of the edges is fixed. The minimum pulse width depends on the resolution of the PWM period, PxTPER. For 40 MHz CPU clock and PxTPER value = 0x7FFE, the resolution
The period of the pulse can be adjusted by changing the content of the pulse period register, PxTPER.

The value in the PxTPER is related to the PWM frequency as:

\[\text{PxTPER} = \left(\frac{f_c}{f_{PWM}} - 1 \right) : 2 \]

where \(f_c \) is the device operating frequency and \(f_{PWM} \) is the PWM switching frequency.

IMPLEMENTATION OF THE PWM PULSES

To generate the three phase outputs, sinusoidal data for a complete electrical cycle is provided in a 64-word table. The data is in 16-bit signed fractional format normalized to the range -1 to 1. A variable called \(\text{Phase} \) is used as a 16-bit pointer to the table with 0x0000 representing 0º and 0xFFFF representing 359.99º. At each PWM period interrupt (50 μs), the \(\text{Delta Phase} \) variable is added to \(\text{Phase} \). The value of \(\text{Delta Phase} \) determines
how fast the code moves through the sinusoidal data table and, as a result, sets the modulation frequency.

The Delta_Phase variable is calculated as follows:

After the Phase variable has been adjusted by Delta_Phase, two additional table pointers are calculated for the 2nd and 3rd motor phases by adding a constant offset to Phase. Assuming a 16-bit pointer, a value of 0x5555 provides a 120º offset and a value of 0xAAAA gives a 240º offset.

Next, the three 16-bit pointers are right shifted by 10 to get the most significant 6 bits of information. Since we only have a 64-entry table, we only need a 6-bit pointer.

Finally, the three-phase pointers are added to the base address of the sine wave table stored in program memory and the sine values are retrieved. Now that we have the sine values, they need to be scaled for the desired modulation amplitude and PWM duty cycle range. First, the look-up values are multiplied by the value in the PTPER register to establish the amplitude. The PTPER value is then added to the amplitude to ensure that the resulting duty cycle value is positive. The Fig. 3 illustrates this scaling process. Since the duty cycle registers have twice the resolution compared to the PTPER register, a maximum value of 2xPTPER is required.
The ADC is enabled to scan the analog inputs AN7 and AN12, which are both connected to potentiometers on the experimental board; ADC conversions are triggered from the PWM module every 16 PWM cycles and the ADC interrupts the CPU after two sample/convert sequences.

With this configuration, the ADC effectively samples AN7 and AN12 at a frequency of 500 Hz. The ReadADC subroutine is called at each ADC interrupt to read the conversion values and calculate the Voltage-Frequency (VF) profile.

The potentiometer connected to AN7 sets the drive frequency. The 10-bit ADC result is right shifted by 2 and written to the Frequency variable. The frequency resolution is 0.244 Hz/bit, so the potentiometer can adjust the drive frequency up to 62 Hz with this scaling. The AN2 potentiometer is used to set the voltage-to-frequency ratio, which determines the slope of the VF profile. The VF profile has maximum slope with the potentiometer set to full value. The ADC results for AN7 and AN12 are left shifted to convert them to fractional values, which simplifies the mathematics. In fractional mathematics, 0x7FFF = 0.999. The two fractional values are multiplied using the fractional MPY instruction.

The result of the multiply is a fractional value that can be used to scale the modulation voltage between 0 and 100%. This value is stored in the Amplitude variable. Together, the Frequency and Amplitude values specify the input parameters for the sine wave generation. The value of Amplitude is limited, so that overmodulation will not occur in the PWM modulation routine.

In this application, the ADC and VF processing occurs at a 500-Hz rate to generate new voltage and frequency values.

The software process can be described by the following flowchart (Fig. 4) which is more detailed in Fig. 5 to 7.

The DSPIC33FJ128MC804 configuration bits are set before doing anything; the I/O ports, the system variables,
Experimental results: The obtained PWM signals are shown in Fig. 7 and the phase currents are presented in Fig. 8.

CONCLUSION

This work presented an implementation of sinusoidal control of an ACIM through three phase inverter with dsPIC33FJ128MC804 Digital Signal Controller. The obtained line to line voltage and phase to neutral voltages are sinusoidal as expected with a 120° phase shift between phase voltages.

The next stage is the implementation of vector control of an ACIM using the same Digital Signal Controller. The choice of the dsPIC33F family of Digital Signal Controllers is mainly guided by the fact that it is more powerful than simple µcontrollers due to its DSP unit and more cheaper than typical DSP.

REFERENCES

NEC, 2004. 78K0 Application Note: An Introduction to Space Vector Modulation using NEC’s 8-bit Motor Control Microcontrollers. NEC Corporation.