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Abstract: In this study, an effective method for analyzing the forced vibration of FG conical shell under
impulse loads is presented. A set of simpler principal vibration modes of conical shell are presented which
satisfies the end boundary conditions of simply supported. The modulus of elasticity and mass density of
Functionally Graded (FG) conical shell is assumed to vary according to a gradient index in terms of the volume
fractions of the constituents. The Rayleigh-Ritz method with Hamilton’s principle is used to obtain the equation
of motion of functionally graded conical shell. By solving eigenvalue problem of the equation of motion, the
natural frequencies and the dynamic responses of functionally graded conical shell can be calculated. The
considered impulse load types are step pulse, sine pulse, triangular pulse and exponential pulse. To validate the
present analysis, numerical comparisons between results with those in the literature and calculated by the
software ABAQUS are done. 
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INTRODUCTION

A group of materials scientists in Japan introduced
the idea of the construction of functionally graded
materials in 1984. FGMs have experienced a remarkable
increase in terms of development and research programs
during the past two decade. World wide dissemination
and distribution of the results through international
meetings, exchange programs and publications testifies to
this increasing growth. They have obtained many
applications in space plan body, rocket engine
components, nuclear reactor components, engine
components, first wall of fusion reactor, hip implant,
turbine blades and other technological and engineering
applications. A detailed discussion on their applications,
processing and design can be found in Refs. Obata and
Noda (1996), Wetherhold et al. (1996), Suresh and
Mortensen   (1998),  Miyamoto  et  al. (1999) and
Kieback et al. (2003). Commonly, FGMs are made from
a mixture of ceramics and metals and are more
characterized by a continuous and smooth change of the
mechanical properties from one surface to another. In
addition, a mixture of ceramic and metal with a
continuously changing volume fraction can be easily
fabricated. (Reddy and Chin, 1998; Liew et al., 2002).
FGMs now have been considered as one of the most
promising  candidates  for  future   smart   composites  in
numerous   engineering   fields.   Most   of   FGMs   and

composite shells are used under impulse load and
application of this loading may cause strength reduction
and large deformation. Regarding the obvious
significance in practical applications, the dynamic
responses of the structure in design process have attracted
many research efforts. Between those available,
Christoforou and Swanson (1990) gave an analytic
solution for the problem of simply-supported orthotropic
cylindrical shells subject to impact loading. Lee and Lee
(1997) used the first-order shear deformation shell theory
to investigate the free vibration and dynamic response for
the CFRP and GFRP cross-ply laminated circular
cylindrical shells under impulse loads. Matemilola and
Stronge (1997) developed an analytical solution for the
impact response of a simply supported anisotropic
composite cylinder. Sofiyev et al. (2009) used the
Galerkin method to investigate the vibration and stability
of orthotropic conical shells under a hydrostatic pressure.
Furthermore, Fares et al. (2004) studied the problem of
minimizing the dynamic response of laminated truncated
conical shells with minimum control force is studied.
Sofiyev (2004) presented the stability of FG conical shells
subject to aperiodic impulsive loading has been presented.
Jafari et al. (2005) used the first-order shear deformation
shell theory to investigate free and forced vibration of
composite circular cylindrical shells under radial impulse
load and axial compressive loads.

Khalili et al. (2009) investigated free and forced
vibration of multilayer composite circular cylindrical
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shells under transverse impulse load as well as combined
static axial loads and internal pressure based on first order
shear deformation theory. Malekzadeh et al. (2010)
studied dynamic response of multilayer circular
cylindrical shells formed from hybrid composite materials
under lateral impulse load is studied. Despite the fact that
many studies on the dynamic problems of the conical and
cylindrical shells have been published, the forced
vibration problems of the FG conical shell under impulse
loads have to be comprehensively studied. Through
dynamic response analysis, an efficient way for
computing the forced vibration responses can be obtained
and further used in the vibration control and dynamic
designs of the conical shells. The Rayleigh-Ritz method
is used because the equation of motion of FG conical shell
is very complicated that makes it difficult to analytically
solve it. In this study, free and forced vibration of conical
shell made of Functionally Gradient Material (FGM)
under impulse loads is investigated by using the Rayleigh-
Ritz method.

METHDOLOGY

Functionally gradient materials: In which for
functionally graded materials with two constituent
materials, Poisson ratio L is assumed to be constant
through the thickness, whereas the variations through the
thickness of Young’s modulus E(0) and the mass density
per unit volume D(0) can be written as (Matsunaga,
2009):

Fig. 1: The schematic diagram of a FGM conical shell (a) The
geometry and the curvilinear surface and cartesian
coordinate systems; (b) The infinitesimal shell element
and the corresponding stresses

E(0) = EM + (EC ! EM)(0.5 + 0/h)p (1)

D(0) = DM+(DC ! DM)(0.5+0/h) p (2)

where 0 is the thickness coordinate (-h/2 #0# h/2), and
p$ 0 is the gradient index. Subscripts C and M refer to the
ceramic and metal constituents, respectively. For the
value p = 0, a fully ceramic shell is intended and infinite
p, a fully metallic shell. When the gradient index is
increased, the content of metal in the FGM layers
decreased.
 
Equation of motion of functionally graded conical
shell: A thin and FG conical shell with constant thickness
is assumed. Figure 1 shows the schematic diagram of the
conical shell. The two boundaries of the conical shell are
Simply Supported (S-S). The corresponding curvilinear
surface coordinates O - >.0 and Cartesian coordinates O-
xyz are also shown in Fig. 1. The curvilinear surface
coordinates are limited to be orthogonal ones which
coincide with the lines of principal curvature of the
neutral surface. For conical shells, the lines of principal
curvature of the neutral surface are the circles ( .-axis)
and parallel meridians ( >-axis). For a thin conical shell,
plane stress condition is assumed and the constitutive
relation is given by:

{F} = [Q]{e} (3)

where {F} is the stress vector, {e} is the strain vector and
[Q] is the reduced stiffness matrix. The stress vector and
the strain vector are defined as:

{F}T = {F11 F22 F12 F23} (4)

{e}T = {g11 g22 g12 g23} (5)

where, gij (i, j = 1, 2, 3)are the strains and Fij(i, j = 1, 2, 3)
are the stresses in which 1, 2 and 3 coincide with the  >,.
and 0 directions. Where F11 and F22 are the normal stresses
acting in the > and . directions, F12 and F22 are the shear
stresses in the curvilinear coordinate O - >.0 as shown in
Fig. 1b. The reduced stiffness matrix is defined as:
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For FGM materials the reduced stiffness Qij(i, j = 1,
2 and 6, respectively) are defined as:
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where  is the Young’s modulus and : is the Poisson’s
ratio. According Soedel (2004), the components in the
strain vector {e} are defined as:

g11 = e1 + 0k1 g22 = e2 + 0k2
g12 = (+20J g23 = e23 (8)

where e1,e2,( and e23 are the references surface strains,
and k1,k2 and J are the surface curvatures. These surface
strains and curvatures are defined as:
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For a thin conical shell the force and moment
resultants are defined as:
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Substituting Eq. (3), with substitution from Eq. (8),
into (10) and (11), the constitutive equation is obtained as:

{N} = [S]{g} (12)

where, {N} and {g} and [S] are, respectively, defined as:

{N}T = {N> N. N>. N.0 M> M. M>.} (13)

{g}T = {e1 e2 (e23 k1 k2 2J} (14) 
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where Aij, Bij and Dij (i, j = 1, 2 and 6) are the extensional,
coupling and bending stiffnesses defined as:
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when the reduced stiffness matrixes are a function of 0 for
functionally gradient materials, Bij are present in the
constitutive equation for a FG conical shell, unlike a
homogeneous isotropic conical shell where the Bij do not
exist.

To determine the equation of motion of the conical
shell, Hamilton’s principle with the Rayleigh-Ritz method
will be used. Hamilton’s principle is written by Soedel
(2004):
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where, T the kinetic energy, U strain energy and W work,
t1  and t2 are the integration time limits, *(0) denotes the
first variation. The strain energy and kinetic energy and
virtual work of a conical shell can be written as:
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where, q1, q2, and q3 are the distributed load components
per unit area along the >, . and 0 directions and are
assumed to act on the neutral surface of the shell. The
units of q1,q2 and q3 are [N/m2].

The distributed loads q1(t), q2(t) are equal to zero and
the FG conical shell subjected to distributed radial load of
q3(t) per unit area on a localized small patch bounded by
-.1#.#.1 and ((L+L0)/2)-L2)#>#((L+L0)/2)+L2) that they
are written by:
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Fig. 2: Distributed load over small area
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q30 is the amplitude. Substituting Eq. (21) into (20), The
work done by this load on the conical shell is
(Kandasamy, 2008):
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For simply supported conical shell, the boundary
conditions at both ends can be written as:

v = w = N11 = M11 = 0 (23)

at > = 1 and > = 10  would be considered. In the Rayleigh-
Ritz method, the shape of deformation of the continuous
system is approximated using a series of trial shape
functions that must satisfy the geometric boundary
conditions. The displacements can be written as:
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where, U, V and W are the trial shape functions or the
principal vibration modes, and p, r, s are the generalized
coordinates or modal coordinates. They are defined as:

p = [p11, ... ,p1n, p21, ... ,p2n,pm1, ... , pmn]T

r = [r11, ... ,r1n, r21, ... ,r2n,rm1, ... , rmn]T

s = [s11, ... ,s1n, s21, ... ,s2n,sm1, ... , smn]T

U = [U11, ... ,U1n, U21, ... ,U2n,Um1, ... , Umn]T

V = [V11, ... ,V1n, V21, ... ,V2n,Vm1, ... ,Vmn]T

W = [W11, ... ,W1n, W2n, ... ,Wm1, ... ,Wmn]T (27)

It is necessary to demonstrate the formulations of the
principle mode shapes U, V and W in Eq. (24)-(26). A
number of vibration mode shapes of conical shells have
been utilized. According a number of researches, (Soedel,
2004; Shabana, 1997; Clough and Penzien, 1993), the
displacement field is approximated using a series of trial
shape functions that must satisfy the geometric boundary
conditions of the problem. For instance, references Li
(2000) and Lam and Li (1999) used a kind of vibration
modes of conical shells that are similar to those of
cylindrical shells. The main mode shapes of conical shells
with simply supported boundaries can be declared as:
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where, i and j denote the wave numbers in the meridional
and circumferential directions. Substituting Eq. (18), (19)
and (22) in terms of the generalized coordinates and
displacement shape functions into Eq. (17) and fulfilling
the variation operation in terms of p, r and s. They can be
obtained as:
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where, Mt the generalized mass matrix, Kt the stiffness
matrix, Q the forcing matrix, X the generalized coordinate
matrix and written by:
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Q = [0 0 Fq3 q3]T X = [pT rT sT]T (30)

where, M1,M2 and M3 are the modal mass matrices and
K1,K2,…,K6 are the modal stiffness matrices and Fq3 is the
forcing matrice which are given in Appendix . A solution
of Eq. (29) is in the form:
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Fig. 3: Considered pulse shapes (a) Step pulse (b) Sine pulse (c)
Triangular pulse (d) Exponential pulse

X(t) = X0e8t (31)

where, 8 is the characteristic values or the eigenvalue and
X0 is the eigenvector. Substituting Eq. (31) into the
homogeneous differential equation of Eq. (29) leads to the
following standard eigenvalue problem:

(Mt8
2+Kt)X0 = 0 (32)

From which the eignvalues and eignvectors can be
obtinethed. The imaginary parts of the eigenvalues are the
natural frequencies of the FG conical shell. Substituting
Eq. (30) into (29) gives:
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Expression of impulse loads: The convolution integral
in Eq. (34)-(35) have been solved analytically for
different commonly encountered forcing functions:
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RESULTS AND DISCUSSION

Results of free vibration: The results for gradient index
p = Infinity (Metal) are compared with the open literature
in Table 1. In the numerical calculations, the non-
dimensional frequency parameter is defined as Irie et al.
(1984) and Lam and Li (1999)

(37)f
E

m

m
=

−
ω α

ρ µ
0 2

21( )

where T0 is the natural frequency of the conical shell in
radians per second. The material properties used in the
present study is:

Metal (Aluminium, Al):

Table 1: Comparisons of frequency parameter f for the conical shell
with S-S boundaries (m = 1, p = Infinity (Metal))

Irie et al. Lam and Li
n (1984) (1999) Present

"0 = 30º 2 0.7910 0.8420 0.84307
3 0.7284 0.7376 0.74163
4 0.6352 0.6362 0.64194
5 0.5531 0.5528 0.55902
6 0.4949 0.4950 0.50079
7 0.4653 0.4661 0.47079
8 0.4654 0.4660 0.46921
9 0.4892 0.4916 0.49318

"0 = 45º 2 0.6879 0.7655 0.76424
3 0.6973 0.7212 0.72108
4 0.6664 0.6739 0.67467
5 0.6304 0.6323 0.63364
6 0.6032 0.6035 0.60492
7 0.5918 0.5921 0.59311
8 0.5992 0.6001 0.60045
9 0.6257 0.6273 0.62691

"0 = 60º 2 0.5772 0.6348 0.63423
3 0.6001 0.6238 0.62361
4 0.6054 0.6145 0.61459
5 0.6077 0.6111 0.61128
6 0.6159 0.6171 0.61721
7 0.6343 0.6350 0.63479
8 0.6650 0.6660 0.66525
9 0.7084 0.7101 0.70873

Fig. 4: Natural frequencies associated with various gradient
index  for  the  case  of semi-vertex cone angle a0 = 30º,
m = 1

Fig. 5: Natural frequencies associated with various gradient
index for the case of semi-vertex cone angle a0 = 45º, m
= 1
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Fig. 6: Natural frequencies associated with various gradient
index for the case of semi-vertex cone angle a0 = 60º, m
= 1

EM = 70 GPa, DM=2710 kg/m3, : = 0.3 

Ceramic (Almina, Al2O3):

EC=380 GPa,DC = 3800 kg/m3, : = 0.3

The variation through the thickness of Young’s
modulus E(0)  and mass density per unit volume D(0) are
the same as Eq. (1) and (2). The structural parameters are
h = 0.004 m, h/a2 = 0.01, (L-L0)sin "0/a2 = 0.25. For
gradient index p = Infinity, the frequency parameters
computed by Eq. (37) are listed in Table 1. Also the
corresponding results by Irie et al. (1984), Lam and Li
(1999) are listed in Table 1. 

It is clear from Table 1 that the frequency parameters
acquired by the Rayleigh-Ritz method are in good
agreement with those in the open literature, which
confirms the validity of the present analytical method.

In addition, the principal mode shapes declared by
Eq. (29) can be utilized for the conical shells with two
simply supported boundaries. In Fig. 4-6, natural
frequencies are calculated for the case of semi-vertex cone
angles "0 =  30º, 45º, 60º and gradient index p = 0, 0.5, 3,
30, Infinity and the meridional wave number m = 1.

The forced vibration responses: The forced vibration
responses of functionally graded conical shell with two
simply supported boundaries are computed. The structural
parameters of the functionally graded conical shell sample
are identical to those utilized in Section 5.1. The semi-
vertex cone angle is a0 = 30º. The radii at the two ends are
a1 = 0.3m and a2 = 0.4 m. l0 = 0.6 m and 1 = 0.8 m are the
position coordinates of the conical shell in the curvilinear
surface coordinates O->.0. Thus the length of the conical
shell is s = 1-10 = 0.2 m. q30 is the amplitude of the
impulse loads that equal to 1.0 MPa. 

Regarding to Fig. 2, it is assumed that the load
applied in the radial direction over a small area:12 =
0.01m, .1 = 5.062º .The power of exponential pulse is a =
350. For 

Fig. 7: Time response of center point deflection w under step
pulse for various gradient indexes (p)

Fig. 8: Time response of center point deflection w under sine
pulse for various gradient indexes (p)

Fig. 9: Time response of center point deflection w under
triangular pulse for various gradient indexes (p)

this study, the duration of dynamic loads is chosen same
as the natural period of the metal conical shell. The terms
of m, n of the Eq. (35) sho choose to converge
sufficiently. The number of considered modes (m×n) are
as (1×14). The displacement in the 0 directions of the
middle surface of functionally graded conical shell at
position  ((L+L0)/2,  0)  varying  with  time  are shown in



Res. J. Appl. Sci. Eng. Technol., 4(20): 4055-4065, 2012

4062

-4

-3

-2

-1

0

1

2

3

0 0.2 0.4 0.6 0.8 1.0

Time (msec)

D
ef

le
ct

io
n 

(m
)

×10-4

Metal (P = infinity)
P = 30
P = 8
P = 3
Ceramic (p = 0)

-4

-3

-2

-1

0

1

0 0.2 0.4 0.6

Time (ms)

D
ef

le
ct

io
n 

(m
)

×10-4

Present (metal)
FEM (metal)
Present (ceramic)
FEM (ceramic)

-4

-3

-2

-1

0

1

0 0.2 0.4 0.6

Time (ms)

D
ef

le
ct

io
n 

(m
)

×10-4

Present (metal)
FEM (metal)
Present (ceramic)
FEM (ceramic)

Fig. 10: Time response of center point deflection w under
exponential pulse for various gradient indexes (p)

Fig. 11: Comparison of center deflection w under step pulse
with ABAQUS

Fig. 12: Comparison of center deflection w under exponential
pulse with ABAQUS

Fig. 7-10. From Fig. 11-12, it is observed that the results
agree well with the ABAQUS results. At Fig. 13, the
finite element model of conical shell under impulse loads
is shown.

CONCLUSION

The free vibration and forced vibration of FG conical
shell  under  impulse  loads are investigated by using the

Fig. 13: FEM model for conical shell under impulse loads

Rayleigh-Ritz method. For different semi-vertex cone
angles a0 = 30º,45º,60º the natural frequency first
decreases and then increases as the circumferential wave
number n increases. In all cases when gradient index (p)
increases, natural frequencies decrease. The case of P = 0
and a0 = 30º, conical shell has the highest natural
frequencies. 

The largest deflection happen for metal under step
pulse because the area below the load-time curve is
greater in comparison with others pulses. When gradient
index (p) decreases, the corresponding time response also
decreases. The motions of displacement under triangular
pulse are similar to the sine pulse.

Appendix : The expressions of the modal mass, modal
stiffness and forcing matrices in Eq. (30) are given by:

M UU d d dT

h

h

1 0 2

2

1

1

0

2

0
=

−∫∫∫sin ( )
/

/
α ρ η ξ η ξ ζ

π

M VV d d dT

h

h

2 0 2

2

1

1

0

2

0
=

−∫∫∫sin ( )
/

/
α ρ η ξ η ξ ζ

π

M WW d d dT

h

h

3 0 2

2

1

1

0

2

0
=

−∫∫∫sin ( )
/

/
α ρ η ξ η ξ ζ

π

( )

( )

K
U U

UU

U
U U

U
E d d d

U U
G d d d

T
T

h

h

T
T

T

h

h

1
0
2 2

2

1

1

0

2

0
2

2

10

1

0

2

1
1

1 1

0
=

−
+ +

+ +

−

−

∫∫∫

∫∫∫

sin
(

)

sin

/

/

/

/

α
µ

∂
∂ ξ

∂
∂ ξ

ξ
ξ

µ
∂
∂ ξ

µ
∂
∂ ξ

η

α
∂
∂ζ

∂
∂ζ ξ

η

π

η ξ ζ

η ξ ζ

π

( )

K U
V U V

E d d d

T T

h

h

2 2 2

2

1

1

0

21
1

1
0

=
−

+
⎛

⎝
⎜

⎞

⎠
⎟

−∫∫∫µ
∂
∂ζ ξ

µ
∂
∂ ξ

∂
∂ζ

η

π

η ξ ζ

/

/



Res. J. Appl. Sci. Eng. Technol., 4(20): 4055-4065, 2012

4063

( )

+
+

−
⎛

⎝
⎜

⎞

⎠
⎟

−∫∫∫
1

2 1
1

2

2

1

1

0

2

0( ) /

/

µ
∂
∂ζ

∂
∂ ξ

∂
∂ζ ξ

η

π

η ξ ζ

U V U
V

E d d d

T
T

h

h

( )+
−

⎛
⎝
⎜

⎞
⎠
⎟
⎛

⎝
⎜

⎞

⎠
⎟

−∫∫∫
µ

µ α
∂
∂ ξ

∂
∂ζ

η η
ξ

ππ

η ξ ζ

1 2
0

2

2

1

2

0

2

0tan
( )

/

/ U V

E
d d d

h

h T

( ) ( )+
−

⎛

⎝
⎜

⎞

⎠
⎟

−∫∫∫
1

1 2
0

2

2

1

2

0

2

2

0µ α
∂
∂ζ

η η
ξ

ππ

η ξ ζ

tan
( )

/

/
U

V

E
d d d

h

h T

( )+
+

⎛
⎝
⎜

⎞
⎠
⎟
⎛

⎝
⎜

⎞

⎠
⎟

−∫∫∫
1

2 1 0
2

2

1

1

0

2

0µ α
∂
∂ζ

∂
∂ ξ

η η
ξ

π

η ξ ζ

tan
( )

/

/ U V

E
d d d

h

h T

( ) ( )−
+

⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
2

2 1 0
2

2

1

1

0

2

2

0µ α
∂
∂ζ

η η
ξ

π

η ξ ζ

tan
( )

/

/ U
V

E
d d d

h

h T

K UW
U

W

E d d d

T T

h

h

3
0
2 2

2

10

1

0

2

1
1

=
−

+
⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
cos

( )

/

/α
µ ξ

µ
∂
∂ξ

η η ξ ζ

( )−
−

⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
sin

( )

/

/α
µ

∂
∂ ξ

∂
∂ ξ

η ηξ

π

η ξ ζ

0
2 2

2

1

1

0

2 2

21 0

U W

E d d d

h

h T

( )−
−

⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
sin

( )

/

/α
µ

∂
∂ ξ

∂
∂ ξ

η ηξ

π

η ξ ζ

0
2 2

2

1

1

0

2 2

21 0

U W

E d d d

h

h T

( )−
−

⎛
⎝
⎜

⎞
⎠
⎟
⎛

⎝
⎜

⎞

⎠
⎟

−∫∫∫
µ α
µ α

∂
∂ ξ

∂
∂ ς

η η
ξ

η ξ ζ

πsin
sin

( )

/

/0
2 2

0
2

2

1

1

0

2 2

21 0

U W

E
d d d

h

h T

( )−
−

⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
µ α
µ α

∂
∂ ξ

∂
∂ ς

η η
ξ

η ξ ζ

πsin
sin

( )

/

/0
2 2

0
2

2

1

1

0

2 2

21 0

U W

E
d d d

h

h T

( )−
−

⎛

⎝
⎜

⎞

⎠
⎟
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟−∫∫∫

µ α

µ

∂
∂ξ

∂
∂ξ

η η

π

η ξ ζ

sin

( )

/

/0
2 2

2

1

1

0

2

1 0

U W

E d d d

h

h T

( )−
−

⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
1

1 2
0

2

2

10

1

0

2 2

2

2

µ α
∂
∂ζ

η η
ξ

π

η ξ ζ

sin
( )

( )

/

/
U

W

E
d d d

h

h T

( )−
−

⎛

⎝
⎜

⎞

⎠
⎟

−∫∫∫
sin

( )
( )

/

/α
µ

∂
∂ ξ

η η
ξ

π

η ξ ζ
0
2 2

2

10

1

0

2

1
U

W E
d d d

h

h
T

−
−

⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
µ α

µ
∂
∂ξ

η η
π

η ξ ζ

sin
( )

( ) ( )
/

/0
2 2

2

0

1

0

2 2

21
U

W
E d d d

h

h T

−
+

⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
2

2 1 0

2

2

2

1

1

0

2

0( ) sin
( )

/

/

µ α
∂
∂ζ

∂
∂ ξ∂ζ

η η
ξ

π

η ξ ζ

U W

E
d d d

T

h

h

+
+

⎛
⎝
⎜

⎞
⎠
⎟
⎛

⎝
⎜

⎞

⎠
⎟

−∫∫∫
2

2 1 0
2

2

1

1

0

2

2

0( ) sin
( )

/

/

µ α
∂
∂ζ

∂
∂ζ

η η
ξ

π

η ξ ζ

U W

E
d d d

T

h

h

( )K

V V v VT T

h

h

4 2
0

2

2
0

32

2

0

1

0

2

1
1

1 1

=
−

+
⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫

µ α

∂
∂ζ

∂
∂ζ ξ

η
α

∂
∂ζ

∂
∂ζ ξ

π

sin

tan/

/

E d d d

V V
VV

T
T

h

h

( ) sin

(
/

/

η α

∂
∂ ξ

∂
∂ ξ

ξ
ξ

η ξ ζ

π

+ ×

+
−∫∫∫

0

2

2

0

1

0

2 1

− − + ×
∂
∂ξ

∂
∂ξ

η
α
αη ξ ζ

V
V V

V
G d d dT

T

) ( )
sin

tan
0

2
0

VV G d d d

V V
VV

G d d d

T

h

h

T
T

h

h

1

1
4

1

2

2

1

1

0

2

2
32

2

1

1

0

2

0

0

ξ
η

η
∂
∂ξ

∂
∂ξ ξ ξ

η

η ξ ζ

π

π

η ξ ζ

⎛
⎝
⎜

⎞
⎠
⎟ +

+
⎛
⎝
⎜

⎞
⎠
⎟

+

−

−

∫∫∫

∫∫∫

( )

( )

/

/

/

/



Res. J. Appl. Sci. Eng. Technol., 4(20): 4055-4065, 2012

4064

η
∂
∂ξ ξ

∂
∂ξ ξ

η

π

η ξ ζ

2
2

2
1
1

0
2

2 20
2

1
2

1
−∫∫∫ − −

⎛
⎝
⎜

⎞
⎠
⎟

+

h
h T

TV
V V

V

G d d d

/
/

( )
2

1 2
0 0

2

2

1

1

0

2

2

0( ) sin tan
( )

/

/

−
⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫µ α α
∂
∂ζ

∂
∂ζ

η η
ξ η ξ ζ

V V

E
d d d

h

h T

+
+

⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
2
2 1

0

2

2

1

1

0

2

0

cos
( )

( )
/

/α
µ

∂
∂ξ

∂
∂ξ

η η
π

η ξ ζ

V V
E d d d

h

h T

−
+

⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
3
2 1

0

2

2

1

1

0

2

0

cos
( )

( )
( )

/

/α
µ

∂
∂ξ

η η
ξ

π

η ξ ζ
V

V
E

d d dT

h

h

−
+

⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
3
2 1

0

2

2

1

1

0

2

0

cos
( )

( )
( )

/

/α
µ

∂
∂ξ

η η
ξ

π

η ξ ζV
V E

d d d
T

h

h

( )+
+ −∫∫∫

4
2 1

0

2

2

1

1

0

2

2
0

cos
( )

( )
( )

/

/α
µ

η η
ξ

π

η ξ ζV V
E

d d dT

h

h

K
V w

E d d d

h

h T

5 2
0

2

2

1

1

0

21
1 0

=
− −∫∫∫( ) tan

( )

/

/

µ α
∂
∂ζ ξ

η

π

η ξ ζ

−
−

+

+

+

−∫∫∫
1

1
1

1 1 1

2
0

22

2

1

1

0

2

2

2 2
0

2

2 3

2

0( ) tan
(

sin
)

( )

/

/

µ α
∂
∂ζ

∂
∂ξ ξ

µ
∂
∂ζ

∂
∂ξ ξ α

∂
∂ζ

∂
∂ζ ξ

η η

π

η ξ ζ

V W

V W v
s

W

E d d d

T

h

h

T T

2 1

1 2
0

22

2

1

1

0

2

2

2

2

0tan /

/

α
∂
∂ξ

∂
∂ζ ξ

∂
∂ξ

∂
∂ξ∂ζ ξ ξ

∂
∂ξ∂ζ

V W

V W V W

T

h

h

T T

⎛
⎝
⎜

− + −

−∫∫∫

2 1
13

2
2 2

0

V W
G d d d

T

ξ
∂
∂ζ

η η
µ αη ξ ζ

⎞
⎠
⎟ +

−
×( )

( ) tan

∂
∂ζ

η η
ξ

π

η ξ ζ

V
W

E
d d d

h

h T⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫ /

/
( )

( )
2

2

1

1

0

2

2
0

−
−

⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
1

1 2 2
0

2

2

10

1

0

2 2

2

2

( ) sin
( )

/

/

µ α
∂
∂ζ

∂
∂ζ

η η
ξ

π

η ξ ζ

V W

E
d d d

h

h T

−
−

⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
1

1 2 2

2

10

1

0

2

( )
( )

/

/

µ
∂
∂ζ

∂
∂ξ

η η
ξ

π

η ξ ζ

V W

E
d d d

h

h T

−
−

⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
µ
µ

∂
∂ζ

∂
∂ξ

η η
π

η ξ ζ( )
( )

/

/

1 2 2

2

1

1

0

2 2

2
0

V W
E d d d

h

h T

−
+

⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
2

2 1 2

2

1

1

0

2 2

0( )
( )

/

/

µ
∂
∂ξ

∂
∂ξ∂ζ

η η
π

η ξ ζ

V W
E d d d

h

h T

+
+

⎛

⎝
⎜

⎞

⎠
⎟
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟−∫∫∫

2
2 1 0 2

2

1

1

0

2

2

0( ) sin

( )

/

/

µ α
∂
∂ξ

∂
∂ζ

η η
ξ

π

η ξ ζ

V W

E
d d d

h

h T

+
+

⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
2

2 1 2

2

1

1

0

2 2

0( )
( )

( )

/

/

µ
∂
∂ξ∂ζ

η η
ξ

π

η ξ ζ

V
W

E
d d d

h

h T

−
+

⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
2

2 1 22

2

1

1

0

2

0( )
( )

( )
/

/

µ
∂
∂ζ

η η
ξ η ξ ζ

π
V

W E
d d d

T

h

h

K
w w

w w w w w w

E d d d

h

h T

T T T

6
0
2

2

22

2

1

1

0

2 2

2

2

2

2

2

2

1

1

0
=

−

+ + +

−∫∫∫
sin

( )
(

)

( )

/

/α
µ

∂
∂ξ

∂
∂ξ

ξ

∂
∂ξ

∂
∂ξ ξ

µ
∂
∂ξ

∂
∂ξ

µ
∂
∂ξ

∂
∂ξ

η η

π

η ξ ζ

( )+
−

+ + +

+

−∫∫∫
1

1
1 1

1 1 1

1

2
0

2
0

2

2

2

2 32

2

1

1

0

2

2

2

2

2

2

2

2

2

2

2 2

2

2 2
2

0µ α α
∂
∂ζ

∂
∂ζ ξ

µ
∂
∂ξ

∂
∂ζ ξ

µ
∂
∂ζ

∂
∂ξ ξ

∂
∂ζ

∂
∂ξ ξ

∂
∂ξ

∂
∂ζ ξ

η η

π

η ξ ζ

sin
(
sin

) ( )

/

/ w w

w w w w w w

w w
E d d d

T

h

h

T T T

T

( )+
−

+
−∫∫∫

sin
tan

( )
/

/α
µ α ξ

η
π

η ξ ζ
0

2 2
0

2

2

1

1

0

2

1 0

ww
E d d d

T

h

h

( )

4 1

1
1

0

2 2

2

2

1

1

0

2

2 2

2
2

2
0 0 2

2

1

1

0

2 2

2

2

0

0

sin
(

)
( )

( ) sin tan
( )

( )

/

/

/

/

α
∂
∂ξ∂ζ

∂
∂ξ∂ζ

ξ
∂
∂ζ

∂
∂ζ ξ

∂
∂ξ∂ζ

∂
∂ζ

∂
∂ζ

∂
∂ξ∂ζ

η
ξ

η

µ α α
∂
∂ζ

η η
ξ

π

η ξ ζ

π

η ξ ζ

w w w w

w w w w G
d d d

w

W
E

d d d

T T

h

h

T T

h

h

T

+

− − −

−

−

−

∫∫∫

∫∫∫



Res. J. Appl. Sci. Eng. Technol., 4(20): 4055-4065, 2012

4065

( ) ( ) ( )
−

−

⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
cos

/

/α
µ

∂
∂ξ

η η
ξ

π

η ξ ζ
0
2 2

2

1

1

0

2

1 0

W
W

E
d d dT

h

h

( ) ( ) ( )−
−

⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
µ α

µ
∂
∂ξ

η η
π

η ξ ζ

cos
/

/0
2

2

22

2

1

1

0

2

1 0

W
W E d d dT

h

h

( ) ( )−
−

⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
1

1 2
0 0

2

22

2

10

1

0

2

2µ α α
∂
∂ζ

η η
ξ

π

η ξ ζ

sin tan
( )

/

/
W

W E

d d d

T

h

h

( ) ( )−
−

⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
cos ( )

/

/α
µ

∂
∂ξ

η η
ξ

π

η ξ ζ
0
2 2

2

1

1

0

2

1 0

W
W E

d d d
T

h

h

( ) ( )−
−

⎛
⎝
⎜

⎞
⎠
⎟

−∫∫∫
µ α

µ
∂
∂ξ

η η
π

η ξ ζ

cos
( )

/

/0
2 2

2

1

1

0

2 2

21 0
W

W
E d d d

h

h T

(38)F W d dq
T

L L

L L

3 0
2

1
2

1

0
2

0
2

1

1= +
−

+
+

− ∫∫sinα ξ ξ ζζ

ζ

REFERENCES

Christoforou, A.P. and S.R. Swanson, 1990. Analysis of
simply-supported orthotropic cylindrical shells
subjected to lateral impact loads. J. Appl. Mech., 57:
376-383.

Clough, R.W. and J. Penzien, 1993. Dynamics of
Structures. 2nd Edn., McGraw-Hill Inc., New York.

Fares, M.E. and Y.G. Youssif and A.E. Alamir, 2004.
Design and control optimization of composite
laminated truncated conical shells for minimum
dynamic response including transverse shear
deformation. Compos. Struct., 64: 139-150.

Irie, T. and G. Yamada and K. Tanaka, 1984. Natural
frequencies of truncated conical shells. J. Sound Vib.,
92: 447-453.

Jafari, A.A. and S.M.R. Khalili and R. Azarafza, 2005.
Transient dynamic response of composite circular
cylindrical shells under radial impulse load and axial
compressive  loads.  Thin-Wall. Struct., 43(11):
1763-1786.

Kandasamy, S., 2008. Vibration analyses of open shells
of revolution. Ph.D. Thesis, University of Western
Ontario.

Khalili, S.M.R., R. Azarafza and A. Davar, 2009.
Transient dynamic response of initially stressed
composite circular cylindrical shells under radial
impulse load. Compos. Struct., 89: 275-284.

Kieback, B., A. Neubrand and H. Riedel, 2003.
Processing techniques for functionally graded
materials. Mater. Sci. Eng. A, 362: 81-105.

Lam, K.Y. and H. Li, 1999. Influence of boundary
conditions on the frequency characteristics of a
rotating truncated circular conical shell. J. Sound
Vib., 223: 171-195.

Lee, Y.S. and K.D. Lee, 1997. On the dynamic response of
laminated circular cylindrical shells under impulse
loads. Comput. Struct., 63(1): 149-157.

Li, H., 2000. Frequency analysis of rotating truncated
circular orthotropic conical shells with different
boundary conditions. Composites Sci. Tech., 60:
2945-55.

Liew, K.M., X.Q. He, T.Y. Ng and S. Kitipornchai, 2002.
Active control of FGM shell subjected to a
temperature gradient via piezoelectric sensor/actuator
patches. Int. J. Numer. Meth. Engng., 55: 653-668.

Malekzadeh, K., S.M.R. Khalili and A. Davar and P.
Mahajan, 2010. Transient dynamic response of
clamped-free hybrid composite circular cylindrical
shells. Appl. Compos. Mater., 17: 243-57.

Matemilola, S.A. and W.J. Stronge, 1997. Impact
response of composite cylinders. Int. J. Solids Struct.,
34(21): 2669-2684.

Matsunaga, H., 2009. Free vibration and stability of
functionally graded circular cylindrical shell
according to a 2D higher-order shear deformation
theory. Compos. Struct., 88: 519-531.

Miyamoto, Y., W.A. Kaysser and B.H. Rabin and A.
Kawasaki and R.G. Ford, 1999. Functionally Graded
Materials: Design, Processing and Applications.
Kluwer Academic Publishers, London.

Obata Y. and N. Noda, 1996. Optimum material design
for functionally gradient material plate. Arch. Appl.
Mech., 66: 581-589.


