Multifocus Image Fusion Combined Multiwavelet with Contourlet

1Yuelin Zou, 1You Guo and 2Liang Tian
1The Software Engineering Department, Shijiazhuang Information Engineering Vocational College, Shijiazhuang 050035, PR China
2College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, PR China

Abstract: In this study, we propose a new image fusion method by combining Multiwavelet with Contourlet transform. Firstly, transform the source multifocus images successively by Multiwavelet and Contourlet. Secondly, we employ the LEM rule to fuse the lowpass coefficients and PCCN rule to fuse the hightpass coefficients. Finally, inversely transform the fused coefficients successively by Contourlet and Multiwavelet. This algorithm is obviously better than Multiwavelet or Contourlet method in the fusion effect and the objective criterion of MI and QAB/F.

Keywords: Contourlet, LEM, multiwavelet, PCNN

INTRODUCTION

Because each kind of image sensor can only focus on a given different operating range and environmental conditions, it may not receive all the information necessary for detecting an object by human or computer vision (Pohl and van Genderen, 1998). Fused images may provide increased interpretation capabilities and more reliable results since data with different characteristics are combined (Wang, 2004).

Recently, image fusion methods based on multiscale decomposition, as a very important fusion method, has been widely used in image fusion area and has achieved great success. Multiwavelet, which is extension from scalar wavelets, have received considerable attention from the wavelets research communities both in theory as well as in applications such as signal compression and denoising (Gang and Min, 2000). Multiwavelets have several advantages in comparison with scalar wavelets on image processing, such features as short support, orthogonality, symmetry and vanishing moments, which are known to be important in image processing. An image fusion method based on Multiwavelet transform is proposed (Zhang et al., 2005). The results of the experiment show that this image fusion based on Multiwavelet algorithm can get more satisfactory result.

Do and Vetterli (2005) developed a true 2-D image representation method, namely, the Contourlet Transform (CT) (Duncan and Minh, 2006), which is achieved by combining the LP and the Directional Filter Bank (DFB). Compared with the traditional DWT, the CT is not only with multiscale and localization, but also with multidirectional and anisotropy. As a result, the CT can represent edges and other singularities along curves much more efficiently. However, the CT lacks the shift-invariance, which is desirable in many image applications such as image enhancement, image denoising and image fusion.

In this study, a new Multifocus Image Fusion algorithm is proposed based on combining the Multiwavelet transform with the Contourlet transform. After a multiscale decomposition of Multiwavelet, the Contourlet decomposition is used on the subimage of the Multiwavelet coefficient. The Local Energy Maximum (LEM) fusion rule is used in the low frequency subbands of the Contourlet coefficient. A new fusion method based on the PCNN is used for the high frequency subbands of the Contourlet coefficient. Finally, an inverse Contourlet and Multiwavelet is successively applied on the new fused coefficients to reconstruct the fused image.

METHODOLOGY

Multiwavelet: As in the scalar wavelet case, the theory of Multiwavelet is based on the idea of Multiresolution Analysis (MRA). The difference between them is that the Multiwavelet has two or more scaling and wavelet functions, but the wavelet has a single scaling function and a wavelet function. Its principle described in Shen et al. (2000).

The scaling functions of Multiwavelet are:
\[\Phi(t) = \left[\varphi_1(t), \varphi_2(t), \ldots, \varphi_r(t) \right]^T \] (1)
The mother wavelet functions of Multiwavelet are defined as:

\[
\varphi(t) = \begin{bmatrix} \varphi_1(t), \varphi_2(t), \ldots, \varphi_r(t) \end{bmatrix}^T
\]

where, \(\varphi_i(t) (1 = 1, 2, \ldots, r) \) are mutually orthogonal and \(2^{i/2} \varphi_i(t) (2^i t - k) (j, k \in \mathbb{Z}, 1 = 1, 2, \ldots, r) \) is an orthogonal basis of detailed subspaces on a certain scale space. \(r \) is generally set as 2 in the application of image processing (Xia et al., 2010). The scaling functions and the wavelet functions of Multiwavelet satisfy the two-scale equation as following:

\[
\Phi(t) = \sqrt{2} \sum_{k=0}^{L} H_k \Phi(2t - k)
\]

\[
\Psi(t) = \sqrt{2} \sum_{k=0}^{L} G_k \Psi(2t - k)
\]

where, \(0 \leq k \leq L \) and \(H_k \) and \(G_k \) are the \(k \)th \(r \times r \) lowpass and highpass filter matrices, respectively. Multiwavelet consists of Geronimo, Hardin and Massopust (GHM), which contains two scaling functions and two Wavelet function. Multiwavelet transform decomposition is used on the two-dimensional image successively by row and by column. Multiwavelet decomposition of the clock image used to fuse experiments is shown in Fig. 1.

Contourlet: Contourlet was proposed by Do and Vetterli (2005). Contourlets were developed as an improvement over wavelets in terms of this inefficiency. The resulting transform has the multiscale and time-frequency-localization properties of wavelets, but also offers a high degree of directionality and anisotropy. It can efficiently represent contours and textures of an image. Contourlet is a double Filter Bank (FB) structure for obtaining sparse expansions for typical images with smooth contours, where, the LP is used to capture the point discontinuities firstly, then followed by a Directional Filter Bank (DFB) to link the point discontinuities into linear structures (Kun et al., 2011). Figure 2a shows a multiscale and directional decomposition through the combination of LP and DFB. The overall result is an image expansion using basic elements like contour segments and thus named Contourlet. Figure 2b shows an example frequency partition of the Contourlet transform where the four scales are divided into 4, 4, 8 and 8 directional subbands from coarse to fine scales, respectively.

Proposed fusion algorithm: The flow diagram of the proposed algorithm is shown in Fig. 3 and implemented as:

Step 0: Perform GHM (Multiwavelet) decomposition on the source image A and image B and get the all coefficient including the LL, LH, HL and HH coefficients, \(G_A \) and \(G_B \) defined in this study.

Step 1: Apply Contourlet transform on \(G_A \) and \(G_B \) (every subbands of the Multiwavelet decomposition). Decomposing the \(G_A \) and \(G_B \) by Contourlet transform. Get the Contourlet coefficients \(C_{n,m}^{\text{A,i,j}}(i, j) \) at a resolution scale \(m \) and
Step 4: Perform inverse GHM (Multiwavelet) transform

Step 3: Reconstruct the G F using fused coefficients

The above rule is used in this study.

(Xia et al., 2010). In the low frequency subbands, the energy maximum can be calculated by convolving D_{m,n}(i,i',j,j') with W. The size of the local window is \(p \times q \) (\(p = 3 \) and \(q = 3 \)). So, W is

\[
\begin{bmatrix}
1/16 & 1/16 & 1/16 \\
1/16 & 1/2 & 1/16 \\
1/16 & 1/16 & 1/16
\end{bmatrix}
\]

So, the low frequency direction subband decision map is calculated by:

\[
D_{m,n}^L(i,j) = \begin{cases}
D_{m,n}^A(i,j), & \text{if } E_{m,n}^A(i,j) \geq E_{m,n}^B(i,j) \\
D_{m,n}^B(i,j), & \text{Other}
\end{cases}
\] \((5) \)

Fusion rule for high frequency coefficients: PCNN is a feedback network and each PCNN neuron consists of three parts: the receptive field, modulation field and pulse generator (Ma et al., 2011). In PCNN model, the neuron receives input signals from feeding and linking inputs through the receptive field. The standard PCNN model is described as iteration by the following equations:

\[
\begin{align*}
F^F_i(t) &= \exp(-\alpha_F)F^F_i(t-1) + V^F_i \sum_{m,n} M_{m,n}Y_{m,n}(t-1) + S^F_i \\
L^F_i(t) &= \exp(-\alpha_L)L^F_i(t-1) + F^F_i \sum_{m,n} M_{m,n}Y_{m,n}(t-1) \\
U^F_i(t) &= F^F_i\left(1 + \beta_i L^F_i(t)\right) \\
Y^F_i(t) &= \begin{cases} 1 & U^F_i(t) > \theta^F_i(t) \\
0 & \text{otherwise}
\end{cases} \\
\theta^F_i(t) &= \exp(-\alpha_{\theta^F})\theta^F_i(t-1) + V^F_i\theta^F_i(t)
\end{align*}
\] \((6) \)

In above formula, the \(i \) and \(j \) refer to the pixel location in the Contourlet high frequency coefficients. \(F^F_i \) is feeding input and \(L^F_i \) is linking input \(L^F_{o,i} \). \(S^F_i \) is the input stimulus such as the gray level of image pixels in \((i, j)\) position. \(U^F_i \) is the internal activity of neuron and \(\theta^F_i \) is the dynamic threshold. \(Y^F_i \) stands for the pulse output of neuron and it gets either the binary value 0 or 1. \(\alpha_F \) and \(\alpha_L \) are the attenuation time constants of \(L^F_i \), \(F^F_i \) and \(\theta^F_i \), respectively. \(\beta_i \) is the linking strength. \(V^F_i \), \(V^L_i \) and \(V^\theta_i \) denote the inherent voltage potential of \(F^F_i \), \(L^F_i \) and \(\theta^F_i \), respectively. \(n \) is the current iteration, where, \(t \) varies from 1 to \(T_{max} \), which is the total number of iterations and is set to 200 times. The model is elaborately described in study (Ma et al., 2011). The fusion rule is described as:

- Take the high frequency subband \(C^{A,n}(i, j) \) and \(C^{B,n}(i, j) \) separately as the feeding input to PCNN.
- Let \(L^F_k(0) = 0, \theta^F_k(0) = 1, L^F_k(0) = 0 \) and \(Y^F_k(0) = 0 \) in the k-th subband; i.e., each pixel does not fire.
- Compute \(L^F_k(n), U^F_k(n), Y^F_k(n), \theta^F_k(n) \) according to Eq. (7).
Fig. 4: The fusion results of ‘Clock’ image by different transform ((a) Image focus on the left; (b) Image focus on the right; (c)-(e) Fused image using multiwavelet, contourlet and proposed method; (f) Difference image between (c) and (a); (g) Difference image between (d) and (a); (h) Difference image between (e) and (a))

Firing times can be obtained by:

\[T_{i,j}^{l,k} (n) = T_{i,j}^{l,k} (n-1) + Y_{i,j}^{l,k} (n) \] \hspace{1cm} (7)

If \(t = T_{\text{max}} \), then iteration stops. Then decision map \(D_{F,i,j}^{l,k} \) can be calculated by (8)

\[
\begin{cases}
1, & \text{if } T_{A,i,j}^{l,k} (n) \geq T_{B,i,j}^{l,k} (n) \\
0, & \text{if } T_{A,i,j}^{l,k} (n) \leq T_{B,i,j}^{l,k} (n)
\end{cases}
\] \hspace{1cm} (8)

Parameters of PCNN is set as \(p \times q, \alpha_i = 0.06931, \alpha_g \)

\(= 0.2, \beta = 0.2, V_L = 1.0, V_g = 20. W = \begin{bmatrix} \sqrt{2} & 1 & \sqrt{2} \\ 1 & 0 & 1 \\ \sqrt{2} & 1 & \sqrt{2} \end{bmatrix} \)

RESULTS AND DISCUSSION

Experiments: To evaluate the performance of the proposed fusion method, experiments with fusion one set of multifocus images ‘Clock’ and ‘Pepsi’ have been performed. The pair of the ‘Clock’ image and the pair of ‘Pepsi’ image fusion are shown in Fig. 4a, b and 5a, b.

For comparison purposes, in this study, the fusion is also performed using the Multiwavelet-based, the Contourlet-based method and proposed method, in all of which the subband coefficients are fusion by the proposed LME (lowpass subband) and PCNN (highpass subband) rule, respectively.

From Fig. 4c, h and 5c, h we can see that image fusing using proposed method can obtain a fusion image, on which the left part can be seen clearly than Multiwavelet and Contourlet method. The fusion result of
the Multiwavelet is most obscure in the left part of the image. The fusion result by Contourlet method is better than Multiwavelet method, but the proposed method is better than Contourlet method. It can be clearly seen from the difference with the source image A. It indicates that proposed method extracts the better characteristic than other two methods in multifocus images fusion.

For further comparison, two objective criteria are used to compare the fusion results. The first criterion is the Mutual Information (MI) metric proposed by Piella (2003). The second criterion is the Q\textsubscript{ABF} metric, proposed by Xydeas and Petrovic (2000), which considers the amount of edge information transferred from the input images to the fused images. The values of MI and Q\textsubscript{ABF} of fusion result of the multifocus image fusion are listed in the Table 1. All the objective criteria prove that the fused image of the proposed method is strongly correlated with the source images and more image features, i.e., edges, are preserved in the fusion process, suggesting that the proposed method does well in the multifocus image fusion and outperforms the approach.

Table 1: The MI and Q\textsubscript{ABF} by different transform

<table>
<thead>
<tr>
<th>Images</th>
<th>Criteria</th>
<th>Multiwavelet</th>
<th>Contourlet</th>
<th>Proposed method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock</td>
<td>MI</td>
<td>5.8739</td>
<td>6.1840</td>
<td>6.3414</td>
</tr>
<tr>
<td></td>
<td>Q\textsubscript{ABF}</td>
<td>0.5263</td>
<td>0.6392</td>
<td>0.6662</td>
</tr>
<tr>
<td>Pepsi</td>
<td>MI</td>
<td>5.9464</td>
<td>6.3645</td>
<td>6.5718</td>
</tr>
<tr>
<td></td>
<td>Q\textsubscript{ABF}</td>
<td>0.5263</td>
<td>0.7176</td>
<td>0.7446</td>
</tr>
</tbody>
</table>

CONCLUSION

In this study, a method combing the Multiwavelet with Contourlet is proposed to fuse the multifocus images. The LME is used on the lowpass coefficients of the Contourlet transform and the PCNN is used to select the highpass Contourlet coefficients of the two source images. Some experiments are performed, comparing the new
algorithm with Contourlet and Multiwavelet fusion methods. The experimental results show that the proposed fusion rule is effective and the new algorithm can provide better performance in fusing image than Multiwavelet and Contourlet method.

REFERENCES

