Riemann Boundary Value Problems for Koch Curve

Zhengshun Ruan and Aihua Luo
Zhengshun Ruan and Aihua Luo

Abstract: In this study, when L is substituted for Koch curve, Riemann boundary value problems was defined, but generally speaking, Cauchy-type integral is meaningless on Koch curve. When some analytic conditions are attached to functions $G(z)$ and $g(z)$, through the limit function of a sequence of Cauchy-type integrals, the homogeneous and non-homogeneous Riemann boundary problems on Koch curve are introduced, some similar results was attained like the classical boundary value problems for analytic functions.

Keywords: Holder condition, index, koch curve, riemann boundary value problem

INTRODUCTION

In the classical boundary value problems, let L be an arc-wise smooth and have no sharp points in the complex plane, $G(z)$, $g(z)$ satisfy Holder condition of order $a (0 < a < 1)$ and $G(t)$ is Φ- (t) + $g(t)$ ($t \not\equiv \Phi$), a detailed discussion of the Riemann boundary problems Φ (t) = $G(t)$ Φ (t) + $g(t)$ ($t \in L$) was presented, a complete result was attained. But when L is substituted for Koch curve, functions H^2, H^3, H^4 (in the interior of K_0) and H^0 are defined, but generally speaking, Cauchy-type integral is meaningless on Koch curve.

In this study, when L is substituted for Koch curve, Riemann boundary value problems was introduced, some similar results was attained like the classical boundary value problems for analytic functions.

Let K_0 be the curve of a equilateral triangle whose vertices are $z_k - e^{\frac{2\pi k}{3}} (k = 0, 1, 2)$, choosing the one-third of each side as the base, three equilateral triangles are attained from the outside of K_0, getting rid of these bases (the end point is kept), a polygonal curve K_1 is obtained. These steps are repeated all the time, the polygonal curve K_n is obtained which consist of lines $I_{n,j}, j - 1, 2, 3, ... 4^n, 3, 4^n$ bumper to bumper, length of each line is $|I_{n,j}| = \frac{\sqrt{3}}{3^n}$. The Koch Curve K is obtained when n approaches infinity and the Hausdorff dimension of K is $S = \log_2 \frac{3}{2}$. By using the fractal geometry: mathematics foundings and applications, Ruan and Ai-hua (2011) study a class of boundary value problem for analytic functions bounded by the koch curve. Muskhelishvili (1953) study the singular integral equations. Jian-ke (1993) have a research of the estimation of the hausdorff dimension of koch curve and sierpinski mat.

For K and each K_n, oriented positively is counterclockwise, denoted by E^+ (or E^-) and E_n^+ (or E_n^-) the interior zone and exterior zone of K and each K_n, then $E_n^+ \subseteq E_{n+1}^+$, $E_{n-1}^- \subseteq E_n^- (n \in N)$.

Let $\delta > 0$, $K_\delta^+ = \bigcup \{z \in E^+ | |z - t| < \delta \}$, K_δ^- is defined the δ-neighborhood from the left (closed region). From the construction of K, each E_n^1, E_n^+ consist of closed region of 3×4^n equilateral triangles $\frac{\sqrt{3}}{3^n}$ and each $E_n^- \subseteq E_{n+1}^+$, $E_{n-1}^- \subseteq E_n^-$. The boundaries of these triangular areas are denoted by $\Delta_{n,j} (j = 1, 2, ... 3 \times 4^n)$, $\Delta_{n,j}^+$ is the interior zone. When $\delta > 0$ is fixed, there exists $N_0 \in N$, such that $E_n^2 - E_{n0}^- = \bigcup_{n \in N \backslash N_0} \bigcup_{j = 1}^{3 \times 4^n} \Delta_{n,j}^+$ and each $\Delta_{n,j} (j = 1, 2, ... 3 \times 4^n)$ lies in the interior of K_δ^+. In the following, N_0 is fixed and $\delta > 0$ and small sufficiently such that $0 \in K_\delta^+$. The boundaries of these triangular areas are denoted by $\Delta_{n,j} (j = 1, 2, ... 3 \times 4^n)$, $\Delta_{n,j}^+$ is the interior zone. When $\delta > 0$ is fixed, there exists $N_0 \in N$, such that $E_n^2 - E_{n0}^- = \bigcup_{n \in N \backslash N_0} \bigcup_{j = 1}^{3 \times 4^n} \Delta_{n,j}^+$ and each $\Delta_{n,j} (j = 1, 2, ... 3 \times 4^n)$ lies in the interior of K_δ^+. In the following, N_0 is fixed and $\delta > 0$ and small sufficiently such that $0 \in K_\delta^+$.

Definition: Assume $0 < a < l$, If f satisfy Holder condition of order $a (0 < a < l)$, which is $|f(z_1)| < M|z_1-z_2|^{a}$ for $M > 0$ and $f(z)$ is an analytic function in interior of K_δ^+, then $f \in Ah^a (K_\delta^+)$.

Lemma 1: $t_0 \in K$ if and only if there exists $N (t_0) \in N$ such that $t_0 \in \bigcap_{n \in N \backslash N_0} K_n$.

Lemma 2: Assume:

$s - 1 < a < 1$, $s = \log_3 4$, $f \in Ah^a (K_\delta^+)$,

Then,
\[\Phi(z) = \lim_{n \to \infty} \Phi_n(z) = \lim_{n \to \infty} \frac{1}{2\pi i} \int_{\gamma_n} \frac{\phi(t)}{t - z} \, dt \] (1)

For any \(t_0 \in \mathbb{K} \), \(\Phi^+(t_0) = \lim_{z \to t_0 \in \mathbb{E}^+} \Phi(z) \) and \(\Phi^-(t_0) = \lim_{z \to t_0 \in \mathbb{E}^-} \Phi(z) \). Both exist, satisfied:

\[\Phi^+(t_0) - \Phi^-(t_0) = \varphi(t_0) \] (2)

From the proof of Lemma 2, we can see that:

\[\Phi(z) = \Phi_{a_+}(z), \quad (n \geq N(t_0), \quad z \in \mathbb{E}^+ \cup \mathbb{E}^-) \] (3)

and

\[\Phi^\pm(t_0) = \Phi^\pm_{a_+}(t_0), \quad (n \geq N(t_0)) \] (4)

Now the Riemann boundary value problems for Koch Curve is considered, the analytic function \(\Phi(z) \) defined in \(\mathbb{E}^+ \) and \(\mathbb{E}^- \), satisfying the condition of Riemann boundary value:

\[\Phi^+(t) = G(t) \Phi^-(t) + g(t) \quad (t \in \mathbb{K}) \] (*

where, \(G, \ g \in AH^a_k (k^+ \mathbb{K}), S - l < a < l \) \(G(z) \neq 0 \) \(z \in k^+ \mathbb{K} \) and \(\Phi \in \mathbb{R}_0 \) (that is \(\Phi(\infty) \) is finite).

In this study, when \(L \) is substituted for Koch curve, we define the Riemann boundary value problem. Cauchy-type integral is meaningless on Koch curve. Moreover, when some analytic conditions are attached to functions \(G(z) \) and \(g(z) \), through the limit function of a sequence of Cauchy-type integrals, the homogeneous and non-homogeneous Riemann boundary problems on Koch curve are introduced, some similar results was attained like the classical boundary value problems for analytic functions.

RIEMANN BOUNDARY VALUE PROBLEMS AND THEIR SOLUTIONS

The simplest Riemann boundary value problem is the jump problem: \(G(t) = 1 \) in (*), i.e., \(\Phi(t^-) - \Phi(t^+) = g(t) \) \((t \in \mathbb{K}) \) (*). If \(\Phi(z) \) is required to have a pole of order \(m \geq 1 \) at most at infinity, then the problem is denoted by \(\Phi \in \mathbb{R}_m \), if \(\Phi(z) \) is required to equal to 0 of order \(m \geq 1 \), the problem is denoted by \(\Phi \in \mathbb{R}_m \).

Theorem 1: The solution of the jump problem (*), is given in following: its unique solution is given by (5) when solved in \(\mathbb{R}_m \): when \(m \geq 0 \), it has the general solution (6), when \(m \geq 2 \), it has the unique solution (5) if and only if m-2 conditions of solvability in (7) are fulfilled.

Proof: From (1), (2), (3) when solved in \(\mathbb{R}_m \):

\[\Phi(z) = \lim_{n \to \infty} \frac{1}{2\pi i} \int_{\gamma_n} \frac{g(t)}{t - z} \, dt \] (5)

is the unique solution of jump problem (*).

By the extended Liouville theorem, the general solution of (*), in \(\mathbb{R}_m (m \geq 0) \) is:

\[\Phi(z) = \lim_{n \to \infty} \frac{1}{2\pi i} \int_{\gamma_n} \frac{g(t)}{t - z} \, dt + P_m(z) \] (6)

where, \(P_m(z) \) is an arbitrary polynomial of degree \(m \). From (3), for any \(t_0 \in \mathbb{K} \), allowing for:

\[\Phi(z) = \Phi_{a_}(z) = \frac{1}{2\pi i} \int_{\gamma_n} \frac{g(t)}{t - z} \, dt \quad (n \geq N(t_0), \quad z \in \mathbb{E}_n^{\mathbb{K}} \cup \mathbb{E}^-) \]

it has \(\Phi(z) = \sum_{k=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\gamma_n} g(t) \, dt \right) z^{(k+1)}, \quad (n \geq N(t_0), \quad z \in \mathbb{G} \) for the region \(\mathbb{G} \) which satisfied the neighbourhood of \(z = \infty \) and \(\mathbb{G} \cap \mathbb{E} \). So if and only if:

\[\lim_{n \to \infty} \int_{\gamma_n} g(t) t^k \, dt = 0 \quad (k = 0, 1, \ldots, m - 2) \] (7)

\(\Phi(z) \) defined by (5) has a zero point at infinity of order \(m \geq 2 \).

If \(g(t) = 0 \) in (*), then it is called a homogeneous Riemann boundary value problem, that is:

\[\Phi^+(t) = G(t) \Phi^-(t) \quad (t \in \mathbb{K}) \] (*

Theorem 2: For the homogeneous Riemann boundary value problem (*), if the solutions are in \(\mathbb{R}_0 \), it has only the trivial solution when its index \(K < 0 \) and its solution is \(\Phi(z) = X(z) P_m(z) \) when \(K \geq 0 \), where \(P_m(z) \) is an arbitrary polynomial of degree \(m \).

Proof: Because \(G \in AH^a_k (k^+ \mathbb{K}) \) and taking value of no zero, there exists a integer \(K \), such that:

\[\int_{2\pi i} \log G(z) \, dk = \int_{2\pi i} \log G(z) \, dk = K \quad (n \geq N_0) \]

called \(K \) is the index of (*), or (*).

Assume \(G_0(z) = z^k G(z) \), then \(G_0 \in AH^a_k (k^+ \mathbb{K}) \), \(G_0(z) \neq 0 \) \((z \in k^+ \mathbb{K}) \),

by introducing a new function \(\psi(z) \):
\[\Psi(z) = \begin{cases}
\Phi(z), & z \in E^+ \\
\frac{1}{2\pi i} \int_{\kappa} \frac{\log G_0(t)}{t - z} dt, & z \notin E^+ \end{cases} \]

then (*)_2 becomes a Riemann boundary value problem for \(\psi(z) \psi^-(t) = G_0(t) \psi^+(t) (t \in K) \) with index 0. Since \(\Phi \in R_\kappa \), its solution \(\psi \in R_{-\kappa} \). If we set:

\[\Gamma_n(z) = \lim_{n \to \infty} \frac{1}{2\pi i} \int_{\kappa} \frac{\log G_0(t)}{t - z} dt, (z \notin K, n \geq N_0) \]

\[\Gamma(z) = \lim_{n \to \infty} \Gamma_n(z) \]

which satisfied \(\Gamma^+(t) - \Gamma^-(t) = \log G_0(t) (t \in k) \) and \(\Gamma(\infty) = 0 \). Introducing \(X_0(z) = e^{\Gamma(z)} \), then \(X_n(z) \) is analytic in \(E^+ \cup E^- \) and \(X_0(z) = 1 \), \(X_0(z) \) and \(X^+(t) (t \in K) \) have no zero points, also:

\[X_0^+(t) = G_0(t) X_0^-(t) = G(t) t^k X_0^-(t) (t \in K) \]

and call it canonical function of (*)_2 or (*) , then:

- \(X(z) \) satisfy \(X(z) \) is analytic in \(E^+ \cup E^- \) and \(X(z) \neq 0 \) \((z \in E^+ \cup E^-) \)

- \(X^+(t) (t \in K) \) exists and \(X^+(t) \neq 0 (t \in K) \)

- \(X(z) \) has finite order -\(K \) at \(z = \infty \)

\[X^+(t) = G(t) X^-(t) (t \in K) \]

Considering (9), (*)_2 becomes a jump problem:

\[\Phi^+(t) - \Phi^-(t) = g(t) X^+(t) - X^-(t) = 0 \quad (t \in K) \quad (10) \]

From the process in jump problem, the results are attained from solving \(\frac{\Phi(t)}{X(t)} \) in \(R_\kappa \).

Let us consider the non-homogeneous Riemann boundary value problem (*), from the index, the canonical function \(X(z) \) of its corresponding homogeneous problem in (8), Considering (9), (*) becomes a jump problem:

\[\Phi^+(t) - \Phi^-(t) = g(t) X^+(t) - X^-(t) = 0 \quad (t \in K) \quad (11) \]

solving \(\frac{\Phi(t)}{X(t)} \) in \(R_\kappa \). Since \(g \in AH^a(K^+) \), but \(\frac{g(0)}{X^+(0)} \) is may not a function in \(\frac{g(t)}{X^+(t)} \). For any \(t_0 \in K \), log \(G_0 \in AH^a(K^+) \), therefore \(\Gamma(z) = \Gamma_n(z) = \int_{-\kappa \pi}^{\kappa \pi} \log G_0(t) dt \)

(\(z \in E^+ \)).

By the Privalov theorem, \(\Gamma_n(z) \) and \(\Gamma_n^+(t) \) are analytic and satisfy Holder condition of order \(a \) in \(E^+ \), since \(X(z) = e^{\Gamma(z)} \)

(\(z \in E^+, n \geq N(t_0) \)), \(X(z) \) and \(X_n^+(t) \) are analytic and satisfy Holder condition of order \(a \) in \(E^+ \).

Introducing \(n \geq N_0 \):

\[X^+(z) = \begin{cases}
X^+(z), & \text{if } z \in K \cap K_n; \\
(1) & \text{if } z \in E^+ \setminus K \cap K_n \end{cases} \]

(12)

then \(\frac{g(t)}{X(t)} \) holds the condition of theorem 1, we have:

Theorem 3: For the non-homogeneous Riemann boundary value problem (*), if the solutions are in \(R_\kappa \), its general solution is:

\[\Phi(z) = \lim_{n \to \infty} \frac{X(z)}{2\pi i} \int_{K} \frac{g(t)}{X^+(t) - z} dt + X(z) P_m(z) \]

when, \(k \geq 0 \), where \(P_m(z) \) is an arbitrary polynomial of degree \(m \). Its unique solution is:

\[\Phi(z) = \lim_{n \to \infty} \frac{X(z)}{2\pi i} \int_{K} \frac{g(t)}{X^+(t) - z} dt + X(z) P_m(z) \]

(13)

when, \(K = -1 \), its unique solution is (13) if and only if:

\[\lim_{n \to \infty} \int_{K} \frac{g(t)}{X^+(t) - z} dt = 0 \quad (k = 0, 1, \ldots, \kappa - 2) \]

is satisfied when \(K \leq 2 \).

Corollary: For the non-homogeneous Riemann boundary value problem (*), if the solutions are in \(R_{-1} \), corresponding problem (11) is solved in \(R_{-1} \), when \(K \geq 1 \), its general solution is:

\[\Phi(z) = \lim_{n \to \infty} \frac{X(z)}{2\pi i} \int_{K} \frac{g(t)}{X^+(t) - z} dt + X(z) P_m(z) \]

its unique solution is (13) if and only if:

\[\lim_{n \to \infty} \int_{K} \frac{g(t)}{X^+(t) - z} dt = 0 \quad (k = 0, 1, \ldots, \kappa - 1) \]

is satisfied when \(K \leq 1 \).
ACKNOWLEDGMENT

This study was supported by the Special Fund for Basic Scientific Research of Central Colleges, South-Central University for Nationalities, CZQ12016.

REFERENCES

