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Abstract: Paraphrase Identification (PI) problem is to classify that whether or not two sentences are close 
enough in meaning to be termed as paraphrases. PI is an important research dimension with practical 
applications in Information Extraction (IE), Machine Translation, Information Retrieval, Automatic 
Identification of Copyright Infringement, Question Answering Systems and Intelligent Tutoring Systems, 
to name a few. This study presents a novel approach of paraphrase identification using semantic heuristic 
features envisaging improving the accuracy compared to state-of-the-art PI systems. Finally, a 
comprehensive critical analysis of misclassifications is carried out to provide insightful evidence about the 
proposed approach and the corpora used in the experiments. 
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INTRODUCTION 

 
Language and speech processing, also referred to 

as Natural Language Processing (NLP) or Natural 
Language Understanding (NLU) is regarded as 
automation or mechanization of human languages. 
Humans use language in everyday life, in various 
forms, such as writing, reading, listening or speaking 
and is the most preferred mode of communication and 
interaction probably. Although there exist many 
approaches to NLP, but there are two main branches of 
NLP, namely Natural Language Analysis (NLA) and 
Natural Language Generation (NLG). NLA is mainly 
concerned with lexical, syntactic, semantic, pragmatic 
and morphological analysis of text. Lexical analysis is 
concerned with the study of lexemes and their 
relationships. Syntax puts text into a structure more 
convenient for semantic or literal meaning analysis. 
Moreover, semantics is the study and analysis of literal 
meanings of text. On the other hand, pragmatics is 
analysis of utterances or text with reference to context, 
while morphology is the study of how root words and 
affixes are composed to form words. As opposed to 
NLA, NLG is concerned mainly with generation of 
fluent/eloquent multi-sentential or multi-paragraph 
response in natural language (Dale, 2010). 

The domain of NLP includes research challenges in 
multifarious dimensions like, semantics and pragmatics, 
NLG, textual entailment, knowledge representation of 
Quran, text summarization, sentiment analysis and 
paraphrasing. Each of the these research issue may 
comprise of sub-categories like paraphrasing has at 
least   three   categories, namely paraphrase generation, 
paraphrase acquisition and paraphrase identification. 
We    envisage   to   address   paraphrase   identification  

problem specifically as it has potential applications in 
question answering, paraphragiarism detection and 
natural language generation. 
 
Paraphrase identification: Before describing 
paraphrasing and its categories, we first look at 
definitions of term “paraphrase”. Some definitions have 
been given in Table 1 and more can be found in Lintean 
et al. (2010). Most definitions include expressions such 
as, different words, own words, clearer or shorter way. 
So it is evident that, a wholesome concept of paraphrase 
is believed to maintain the same idea or semantic 
meaning in a clearer or often shorter way. 

Paraphrasing can be done at various levels e.g., 
word, sentence, paragraph or discourse level. However, 
from NLP point of view, research issues related to 
paraphrasing are paraphrase generation, paraphrase 
acquisition and paraphrase identification. Paraphrase 
Generation (PG) is the task of automatically 
paraphrasing text at any of afore stated levels, as in 
Wubben et al. (2010). PG may also be enumerated as a 
task much related to NLG. Paraphrase acquisition or 
paraphrase extraction is the task of extracting 
paraphrases or candidate paraphrases from text corpora 
automatically, as in Bhagat et al. (2009). On the other 
hand, paraphrase identification is the task of classifying 
that whether two or more texts at any of the afore stated 
levels, are in paraphrase relationship or not. Paraphrase 
Recognition (PR) and Paraphrase Detection (PD) are 
the other terms used for Paraphrase Identification (PI). 

Although PI is an active field of research and has 
possible   applications   in   Information Extraction (IE), 
Machine Translation (MT), Information Retrieval (IR),   
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Table 1: Definitions of paraphrase identification 
Definitions of paraphrase 
 A rewording of something spoken or written, usually for the purpose of making its meaning clear (Michael, 1999). 
 To express in a shorter; clearer or different way than someone has said or written (Longman, 2004). 
 To express what someone else has said or written using different words especially in order to make it shorter or clearer (Macmillan, 2006). 

 To repeat something written or spoken using different words, often in a humorous form or in a similar or shorter form that makes the 
original meaning clearer (Cambridge, Year). 

 
Table 2: True and false paraphrase instances 
Sentence ID Sentence pair Quality 
1390995 The settling companies would also assign their possible claims against the underwriters to the investor 

plaintiffs, he added. 
1 

1391183 Under the agreement, the settling companies will also assign their potential claims against the 
underwriters to the investors, he added. 

 

1430402 A tropical storm rapidly developed in the Gulf of Mexico Sunday and was expected to hit somewhere 
along the Texas or Louisiana coasts by Monday night. 

0 

1430329 A tropical storm rapidly developed in the Gulf of Mexico on Sunday and could have hurricane-force 
winds when it hits land somewhere along the Louisiana coast Monday night. 

 

 
Automatic Identification of Copyright Infringement, 
Question Answering (QA), NLG, Modelling Language 
Perception in an Intelligent Agent (Nirenburg et al., 
2008) and Intelligent Tutoring Systems (ITS). Still, to 
our knowledge, there is not any application using it 
practically, while Malakasiotis (2009) envisaged 
applying it in a semi-supervised environment. 

To illustrate the PI task, consider the following 
simple pairs of sentences given in Table 2. It can be 
observed that pair of sentences {1390995, 1391183} is 
in paraphrase relationship with each other although 
both sentences have lexical differences but content 
delivered is same at a higher level. While sentence pair 
{1430402, 1430329} is not in paraphrase relationship 
because sentences differ in details (or perception) about 
the event. So, PI is a binary classification problem. In 
the following table, a true paraphrase pair has been 
assigned pair quality “1”, while a false paraphrase pair 
has been assigned pair quality “0” and the same 
convention has been used throughout this study. 

Although PI is an active field of research and has 
possible applications in Information Extraction (IE), 
Machine Translation (MT), Information Retrieval (IR), 
Automatic Identification of Copyright Infringement, 
Question Answering (QA), NLG, Modelling Language 
Perception in an Intelligent Agent (Nirenburg et al., 
2008) and Intelligent Tutoring Systems (ITS). Still, to 
our knowledge, there is not any application using it 
practically, while Malakasiotis (2009) envisaged to 
apply it in a semi-supervised environment. 

This study is aimed at developing a PI system 
using semantic heuristic features. It is envisaged that 
the proposed system will have improved paraphrase 
identification accuracy compared to other state of the 
art systems in this domain. This objective will be 
achieved by improving upon the pre-processing 

techniques being employed in such systems and by 
using an enhanced feature set. Moreover, a detailed 
misclassification analysis has been carried out to 
provide an insight into the syntactic structure of corpus 
causing misclassifications. The envisaged improvement 
in pre-processing phase is sought through comparative 
analysis of various PI systems based on cosine 
similarity measure while improvement in feature set is 
proposed by the introduction of enhanced text based 
features and different standard similarity measures. 
 

LITERATURE REVIEW 
 

Paraphrase identification has been approached 
previously by various lexical, syntactic, semantic and 
hybrid techniques. As usage of supervised machine 
learning has been common to most of the techniques, 
the following section, therefore presents supervised 
machine learning based PI techniques.  

 
Supervised learning based approaches: Corley and 
Mihalcea (2005) used knowledge-based methods for 
measuring the semantic similarity of texts and showed 
that their approach performs significantly better than 
lexical matching techniques. They tokenized and POS 
tagged strings and then inserted words into their 
respective word class sets, verb, noun, adjective, adverb 
and cardinal for number entities. They used bag of 
words model for similarity analysis of respective word 
classes, where word-to-word semantic similarity was 
measured only for verbs and nouns, using WordNet 
Similarity package. While lexical matching was 
performed for adverbs, adjectives and cardinals. They 
used directional similarity of strings, where word 
specificity based on Inverse Document Frequency 
(IDF) which is inherently a corpus-based measure was 
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for  machine learning based solution to PI. Methods 
used for the said task mainly included, cosine similarity 
metric, semantic similarity matrix and comparison of 
dependency parse trees using tree kernel methods. 
Cosine similarity metric, a purely lexical metric used in 
Information Retrieval (IR) to determine similarity 
between a query and a document, was used for 
analyzing similarity between sentences in a sentence 
pair. Three different weighting schemes were used, a tf-
idf weighting (cosSimTFIDF), second tf weighting 
(cosSimTF) and last with no weights (cosSim). Out of 
these variants best results were achieved with no 
weighting scheme. Best performance was achieved 
using semantic similarity matrix based on Lin WordNet 
Similarity measure, with accuracy of 0.738 and F-
Measure 0.822. Simple Cosine similarity metric 
(cosSim) performed very well, resulting in accuracy of 
0.727 and F-Measure 0.822. 

Uribe (2008) proposed an approach based on tree 
alignment algorithm to maximize structural 
isomorphism in typed dependency parse trees of 
sentences in a sentence pair. Tree alignment algorithm 
was based on clause overlaps instead of word coupling. 
WordNet synonymy information was also utilized in 
node coupling process. Logistic Regression was used as 
learning model where four features were used, each 
accounting for one of the first four levels of each 
dependency tree. Uribe (2008) used a randomly 
selected 500 sentence pair subset of MSRPC for 
evaluation purposes, where stratified k-fold cross-
validation was used. Researcher reported best precision 
and recall of 0.79 and 0.81, respectively. 

Fernando and Stevenson (2008) used Semantic 
Similarity Matrix method used by Fernando (2007) for 
paraphrase identification. The only difference between 
their and Fernando (2007) was comparison of all word 
senses, opposed to only first word sense in Fernando 
(2007) while obtaining similarity scores using WordNet 
Similarity package. To constrain word-to-word 
similarity measures from resulting in spurious 
similarities a threshold of 0.8 was used for each 
knowledge-based similarity measure. Best performance 
accuracy of 0.741 with F-measure 0.824 was achieved 
using Jiang and Conrath WordNet similarity measure. 

Malakasiotis (2009) used three methods for 
learning to identify paraphrases. First method, called 
INIT, applied nine standard string similarity measures 
to shallow abstractions of the sentences. Sentence 
abstractions included stemmed representations of 
sentences, tokens replaced by POS tags and tokens 
replaced by soundex codes and other such variations. 
Length ratio and Negation features were also used.  

INIT included total of 133 features. Second method 
named as INIT+WN used INIT and WordNet to treat 
synonyms as identical words resulting in higher lexical 
similarity. INIT+WN included total of 133 features. 
Third method, termed INIT+WN+DEP, used INIT+WN 
and dependency parser to obtain typed dependency 
parse trees, to calculate similarity of dependency 
relations at higher level. INIT+WN+DEP used 136 
features in total. Maximum Entropy classifier was used 
to learn paraphrase identification. Best performance 
accuracy of 0.7617 was achieved using 
INIT+WN+DEP, with F-measure of 0.8288. 

Dias and Smith (2004) used generative model that 
creates paraphrases of sentences and probabilistic 
inferencing to reason about whether or not two 
sentences have paraphrase relationship. Model applied 
used quasi-synchronous dependency grammars 
effectively incorporating syntax and lexical semantics. 
They also experimented with combination of their 
model with a complementary logistic regression model 
using product of experts. Highest performance accuracy 
of 0.8342, with 1.0000 precision and 0.9529 recall was 
achieved using oracle ensemble. It was the first system 
to meet human inter-annotator agreement level of 
MSRPC. 

Uribe (2009a, b) followed where alignment and 
monotonicity analysis module and semantic heuristics 
were combined under feature-set definition module. 
Same preprocessing as (Uribe, 2009a) was performed. 
The only divergence from Uribe (2009a) was machine 
learning module for learning to identify paraphrases. 
Like Uribe (2009a) experimentation was performed on 
a 500 pair subset of MSRPC containing 68% of true 
paraphrase pairs. Best reported performance accuracy 
was 0.7360 and 0.7460 under monotonic and non-
monotonic alignment respectively, using Logistic 
Regression Model as machine learning classifier. LRM 
was found to out-perform SVM against same feature set 
used. 
Rajkumar and Chitra (2010) used combination of 
purely lexical, syntactic, lexical semantic and lexical-
syntactic features to construct feature vector to train a 
Back Propagation Network for Paraphrase Recognition. 
Lexical-semantics based on modified string edit 
distance (lexical measure) computed using the Jiang 
and Conrath measure (semantic) were used. In lexical 
features skip-grams with skip distance k as 4 and 
adapted BLEU metric were used. Moreover 
dependency tree edit distance was employed to capture 
syntactic  features.  Parts  of  Speech  enhanced Position 
Error Rate was used to detect semantic similarity where 
one  feature  for  matches  and  another for non-matches 
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Table 3: Features included in feature vectors for baseline system 
Monotonic alignment based feature-set Non-monotonic alignment based feature-set 
Cosine similarity for monotonically aligned sentence pair Cosine similarity for non-monotonically aligned sentence pair 
Overlap coefficient for monotonically aligned sentence pair Overlap coefficient for non-monotonically aligned sentence pair 
Event mismatch Event mismatch 
Polarity Polarity 
Verb or adjective antonym match Verb or adjective antonym match 

 
in Weka can be applied directly to a dataset or may be 
called from Java code. Weka also contains tools for 
data pre-processing, classification, clustering and 
visualization. As Logistic Regression Model (LRM) 
resulted in higher performance accuracy than Support 
Vector Machines (SVM) in Uribe (2009b) so logistic 
regression model was used for classification purposes. 
LRM has been implemented under stochastic gradient 
descent (weka.classifiers.functions.SGD) where loss 
function used was log loss (logistic regression). For 
evaluation purposes, MSRPC corpora was used in the 
experimentations.  
 
The proposed framework: In this section, 
implementation details of proposed approach have been 
presented along with corpora used for its evaluation. 

We have proposed, implemented and experimented 
with a variant system of baseline described above 
which included more features than baseline system, as 
shown in Table 8. The system architecture is presented 
in Fig. 2 

As mentioned earlier, the baseline system took into 
account POS tags of lexical terms while considering the 
similarity of sentences. On the other hand, we also 
experimented with similarity of content vectors without 
considering POS tags. Monotonic alignment was not 
further experimented, as it resulted in performance 
lower than non-monotonic alignment. Whereas 
nonmonotonic alignment used was supported by 
synonymy information contained in WordNet, as 
opposed to baseline system Uribe (2009b) which used 
WordNet only for finding antonym relationships 
between lexemes. 
 Antonym detection was performed on lexical terms 
which had failed to align in bag-of-words based 
alignment. Which resulted in performance optimization, 
since finding antonym relationships between lexical 
terms of complete content vectors would have resulted 
in performance overhead of extra search of antonym 
relationships for aligned lexical terms. As opposed to 
baseline system, our approach did not use overlap 
coefficient; instead along with cosine similarity 
measure dice coefficient and length ratio measures were 
used. A total of 9 features were included in feature 
vectors, as presented in Table 4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: System architecture for ParaDetect 
 

Before discussing further the operational details of 
the proposed system, some terminologies are explained 
in the following paragraph. 

Cosine similarity measure has previously been 
used by Fernando (2007) for PI, however we have used 
this measure to analyze pre-processing applied by 
baseline system Uribe (2009b) in a step-wise fashion. 
We have experimented with five slightly different 
systems developed for baseline pre-processing analysis. 
First, cosine similarity measure was applied on raw 
sentence pairs, called “cosSimRaw”. Secondly, cosine 
similarity measure was applied on tokenized string 
pairs, named “cosSimTok”. As tokenization was 
performed by POS tagger used, so “cosSimTok” used 
POS tags along with lexical terms of sentence pairs. 
Following that, cosine similarity measure was applied 
on tokenized string pairs and system was termed as 
“cosSimTokUnTagged”. This system differs from 
“cosSimTok” in absence of POS tags from sentence 
representations. In the “cosSimTokSwr” system, cosine 
similarity measure was applied on tokenized and stop 
word removed sentence pairs. Finally, cosine similarity 
measure was applied on completely pre-processed 
sentence pairs i.e., content vectors, called 
“cosSimPrep”. We produced these settings to compare 
results with “cosSim” Fernando (2007), the unweighted 
cosine similarity metric used for PI task. The
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POS-tagging 

Content vectors 

Feature-set definition  

WordNet
semantic heuristics  

Feature vectors 

Machine learning 

Weka 

Paraphrase judgment 

Sentence pairs



 
 

Res. J. Appl. Sci. Eng. Technol., 4(22): 4894-4904, 2012 
 

4900 

Table 4: Features included in feature vectors in proposed approach 
ParaDetect features 
1 Cosine similarity extended to include synonymy information of non-monotonically aligned sentences, pre-processed 

with cosSimTokUnTagged pre-processing 
2 Cosine similarity extended to include synonymy information of non-monotonically aligned sentences, pre-processed 

with cosSimTok pre-processing 
3 Dice coefficient extended to include synonymy information of non-monotonically aligned sentences, pre-processed 

with cosSimTokUnTagged pre-processing 
4 Dice coefficient extended to include synonymy information of non-monotonically aligned sentences, pre-processed 

with cosSimTok pre-processing 
5 Event detection based on non-monotonic alignment of sentence pairs, pre-processed with cosSimTok pre-processing, 

with consideration of POS tags 
6 Characters based length ratio of sentences, pre-processed with cosSimTokUnTagged pre-processing 
7 Tokens based length ratio of sentences, pre-processed with cosSimTokUnTagged preprocessing 
8 Polarity 
9 Verb, adjective, noun or adverb antonym match applied to sentence dis-similarity 
 
Table 5:  Performance comparison of ParaDetect and various state-of-the-art systems using complete MSRPC training and test datasets 
 Comparison of proposed approach with state of the art systems using MSRPC 

---------------------------------------------------------------------------------------------------------------------------- 
 Accuracy  Precision  Recall  F-Measure 
Proposed approach 0.7467  0.7822  0.8578  0.8183 
Zhang and Patrick (2005)  0.7190  0.7430 0.8820 0.8070 
Finch (2005)  0.7496  0.7658  0.8980  0.8266 
Kozareva and Montoyo (2006)  0.7664  0.9442  0.6876  0.7957 
Fernando and Stevenson (2008)  0.7410 0.7520  0.9130  0.8240 
Malakasiotis (2009)  0.7617  0.7935  0.8675  0.8288 
Lintean and Rus (2010)  0.7206  0.7404  0.8928  0.8095 
 
Table 6: Performance comparison of proposed approach and various systems using dataset A  
 Dataset A 

------------------------------------------------------------------------------------------------------------------------ 
 Accuracy  Precision  Recall  F-measure 
Proposed approach 0.782  0.747  0.853 0.796 
Cordeiro et al. (2007b)  0.782  --  --  0.809 
Fernando (2007)  0.795  --  --  0.809 

 
cosSimTokUnTagged system introduced here is very 
much similar to cosSim. 
 
Preprocessing: The experimentation with cosine 
similarity based variant systems for baseline analysis 
ascertained that pre-processing in Urib (2009a, b) 
resulted in loss of performance as compared to 
“cosSimTokUnTagged”, as presented in Table 8. So 
ParaDetect included preprocessing as that of 
“cosSimTokUnTagged”, which opposed to baseline 
system pre-processing did not include stop word 
removal and POS constraint. 
 
Corpora for paradetect evaluation: ParaDetect 
evaluation was performed on MSRPC training and test 
sets and {MSRPC and X1999 (For evaluation purposes, 
we used MSRPC and a dataset of 1999 false paraphrase 
sentence pairs provided by João Paulo C. Cordeiro 
called {X1999-} in this study)}referred to as ‘A’ in this 
study and (Fernando, 2007). As original MSRPC 
contains 3900 true paraphrase pairs and 1901 false 
paraphrase pairs, inclusion of 1999 negative paraphrase 

pairs selected randomly from web news stories gave a 
balanced dataset of 3900 positive and 3900 negative 
examples, for experimentation. 

 
RESULTS AND DISCUSSION 

 
This section is divided into three main sub-sections 

to present results followed by a critical analysis of 
experimental findings and finally provide 
misclassification analysis. In the results section the 
results of experiments performed and a comparative 
diagrammatic and tabular analysis of those results has 
been presented. The analysis of misclassifications has 
been detailed later in this section. The results on 
MSRPC have been shown in Table 5 and Fig. 3 For 
comparison of results, performances achieved by some 
other state-of-the-art PI systems have also been 
reproduced and illustrated. Since cosSimTokUnTagged 
proved to be more useful in identifying paraphrases 
than cosSimPrep, so instead of using pre-processing 
done in cosSimPrep, we have pre-processing which was 
applied in cosSimTokUnTagged system, discussed in 
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Fig. 3:  Performance comparison of ParaDetect and various 

state-of-the-art system using Complete MSRPC 
training and test datasets 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Performance comparison of Para Detect and other 

system using dataset A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Detailed accuracy results of ParaDetect 

previous section. Our proposed approach performed 
significantly better than the baseline system. As 
compared to other state-of-the-art PI systems, the 
results of our proposed approach are fairly comparable 
when evaluated using complete MSRPC.  

Moreover, in our approach, performance results 
obtained using dataset A with 10-fold cross validation 
have been produced in Table 6 and Fig. 4. Since 
Fernando (2007) and Cordeiro et al., (2007) have not 
produced precision and recall values, so these are 
missing in Table 8. Accuracy achieved by ParaDetect 
on dataset A is exactly equal to accuracy reported by 
Cordeiro et al., (2007) while f-measure is relatively 
lower. While, both accuracy and f-measure achieved by 
ParaDetect are relatively lower than accuracy and f-
measure values reported by (Fernando, 2007). 
 
Paradetect misclassification analysis: Our proposed 
system performs fairly well at identifying true 
paraphrase pairs, as given in Table 7 and Fig. 5 where 
0.858 is the TP rate for true paraphrase pair class. On 
the other hand, TP rate for false paraphrase pair class is 
just 0.526 which is fairly low with respect to TP rate for 
true paraphrase pair class. We believe that this 
limitation of our approach is mainly due to higher 
lexical similarity in false paraphrase pairs, which makes 
them hard to be differentiated from true paraphrase 
pairs and existence of variety of relationships in false 
paraphrase pairs’ class. On the other hand, 
misclassification in true paraphrase class is primarily 
due to lower lexical similarity in sentence pairs which 
have yet been given positive classifications in gold 
standard annotations. Table 8 shows “marginal” or 
“hard” instances, which might also be argued about 
their gold standard annotations. For example, sentence 
pair {1617861, 1617809} seems to be not quite a true 
paraphrase pair, yet the gold standard annotation 
classified this pair as true paraphrase pair. And sentence 
pair {229207, 229298} has been classified as false 
paraphrase pair even though it clearly seems to be a true 
paraphrase pair. Moreover, further examples also 
illustrate similar phenomenon. 

As, aforesaid, the data set {X1999-}includes 188 
sentence pairs which are exact copy sentences and have 
been annotated as false paraphrase pairs, which does 
not coincide with definition of paraphrase used by 
MSRPC annotators. So, to consolidate this argument 
we trained ParaDetect using training part of MSRPC 
and applied {X1999-} as test set, which resulted    in     
188 FP classifications, meaning that  this  188  sentence 
pair subset contradicts the annotation guidelines 
followed by MSRPC annotators. Hence this 188 
sentence pair subset should either be excluded from 
{X1999-} or might not be used along with MSRPC. 
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Table 7: Detailed accuracy results of proposed approach 
Predicted class  TP rate  FP rate  Precision  Recall  F-measure 
0  0.526  0.142  0.651  0.526  0.582 
1  0.858  0.474  0.782  0.858  0.818 
Weighted avg.  0.747  0.363  0.738  0.747  0.739 
 
 Table 8: Sentence pairs showing some “marginal” instances of MSRPC, for misclassification analysis 

Pair quality 
Sentence1-Id Sentence 1  
Sentence2- Id Sentence 2 

1 1617861 
 

Shares of Coke were down 49 cents, or 1.1%, at $43.52 in early trading Friday on the New York 
Stock Exchange. 

1617809 
 

In late morning trading, Coke shares were down 2 cents at $43.99 on the New York Stock Exchange. 

0 229207 
 

NBC probably will end the season as the second most popular network behind CBS, although it's first 
among the key 18-to- 49-year-old demographic. 

229298 
 

NBC will probably end the season as the second most-popular network behind CBS, which is first 
among the key 18-to-49-year-old demographic. 

1 872807 
 

Freddie Mac shares were down more than 16 % at $50.18 at midday yesterday. 

872885 
 

Freddie Mac shares were off $7.87, or 13.2%, at $52 in midday trading on the New York Stock 
Exchange. 

1 621407 
 

The findings were reported online in the June 1 edition of scientific journal Nature Medicine. 

621315 
 

The findings are published in today's edition of the journal Nature 
Medicine.  

1 452845 
 

The broader Standard and Poor's 500 Index .SPX gained 3 points, or 0.39%, at 924. 

452902 
 

The technology-laced Nasdaq Composite Index <.IXIC> rose 6 points, or 0.41%, to 1,498. 

1 2433757 
 

Prime Minister Junichiro Koizumi must be counting his lucky stars. 

2433838 
 

Prime Minister Junichiro Koizumi has all but popped the champagne bottle. 

1 2949437 
 

The report was found Oct. 23, tucked inside an old three-ring binder not related to the investigation. 

2949407 
 

The report was found last week tucked inside a training manual that belonged to Hicks. 

0 2229419 
 

The department's position threatens to alienate social conservatives, who have provided strong 
political support for Mr. Ashcroft and President Bush. 

2229908 
 

The department's stance disappointed some abortion opponents, and it threatens to alienate social 
conservatives who have provided strong political support for Ashcroft and President Bush. 

0 197853 
 

The dollar's slide against the yen was curbed by wariness that Japanese authorities could intervene to 
stem the yen's rise. 

197784 
 

Despite hefty losses against the euro, the dollar's slide versus the yen was curbed by wariness that 
Japanese authorities could intervene to stem the yen's rise. 

 
CONCLUSION AND FUTURE WORK 

 
In this study, a paraphrase identification approach is 
presented based on improved pre-processing and 
semantic heuristics based enhanced features set. The 
system produces comparable or even better results than 
the state of the art systems in this category. Another 
important part of work is misclassification analysis 
which not only resulted in highlighting advantages and 
disadvantages of semantic heuristics based features 
used in this study, but helped bring to light some 

criticisable annotations of sentence pairs included in 
benchmark corpus like MSRPC, as well. It was also 
shown that the dataset {X1999-} might not be used 
along with MSRPC due to bias of 188 exactly same 
false paraphrase pairs contained in {X1999-}. 

Paraphrase identification is a binary classification 
problem and in reality this is too restrictive in terms of 
classification of everyday text in which “marginal” 
cases do exist. We envisage, as a part of future work, to 
introduce more classes to study paraphrase 
relationships. Moreover, we intend to incorporate a 
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more holistic antonym detection module in the 
proposed framework to account for implicit and explicit 
negations altogether.  
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