Research Journal of Applied Sciences, Engineering and Technology 4(24): 5304-5312, 2012

ISSN: 2040-7467
© Maxwell Scientific Organization, 2012

Submitted: March 14, 2012

Published: December 15, 2012

Accepted: April 08, 2012
ANFIS Approach for Optimal Selection of Reusable Components

'K.S. Ravichandran, ?P. Suresh and °K.R. Sekr
School of Computing, SASTRA University, Thanjavur-613 401, Tamil Nadu, India
?Department of Computer Science, Paavendhar College of Arts and Science, Salem
®School of Computing, SASTRA University, Thanjavur -613 401

Abstract: In a growing world, the development of modern software system requires large-scale manpower,
high development cost, larger completion time and high risk of maintaining the software quality. Component-
Based Software Development (CBSD) approach is based on the concept of developing modern software
systems by selecting the appropriate reusable components or COTS (Commercial Off-The-Shelf) components
and then assembling them with well-defined software architecture. The proper selection of COTS components
will really reduce the manpower, development cost, product completion time, risk, maintenance cost and also
it addresses the high quality software product. In this paper, we develop an automated process of component
selection by using Adaptive Neuro-Fuzzy Inference Systems (ANFIS) based technique by using 14 reusable
components’ parameters as a first time in this field. Again, for increasing the accuracy of a model, Fuzzy-
Weighted-Relational-Coefficient (FWRC) matrix is derived between the components and CBS development
with the help of 14 component parameters, namely, Reliability, Stability, Portability, Consistency,
Completeness, Interface & Structural Complexity, Understandability of Software Documents, Security,
Usability, Accuracy, Compatibility, Performance, Serviceability and Customizable. In the recent literature
studies reveals that almost all the researchers have been designed a general fuzzy-design rule for a component
selection problem of all kinds of software architecture; but it leads to a poor selection of components and this
paper suggests adoption of a specific fuzzy-design rule for every software architecture application for the
selection of reusable components. Finally, it is concluded that the selection of reusable components through

ANFIS performs better than the other models discussed so far.

Keywords: ANFIS, CBSD, fuzzy logic, reusable components

INTRODUCTION

Before the year 2000, the effectiveness of software
development largely depended on structured and object
oriented programming, abstract data type, modeling and
special task based languages. But in the present era, the
component based approach to software development has
seen tremendous growth and has become very popular
(Abreu and Gouldo, 2001; Szyperski et al., 2004).
Component-based design is an effective way of
implementing “design-and-reuse” strategy. However,
given a library of components with varying performance
parameters and quality-of-service metrics, it is often
difficult to select the right components that will satisfy the
System Requirements.

Software Modularity (SM) was used very much in the
CBSS development as well as conventional software
systems development to improve flexibility and
adaptability of software systems (Parsa and Bushehrian,
2004). Automatic reverse engineering process has been
achieved by Khoshgoftaar et al. (2004) through resource
allocation and ranking of software modules. Information
theory was employed to perform SM (Chapin, 2002;

Sarkar et al., 2007). The quality of SM was achieved
through information theoretic metrics approach by Sarkar
etal. (2007). SM was also classified through optimization
algorithms like Genetic Algorithms (Khoshgoftaar et al.,
2004; Parsa and Bushehrian, 2004), Evolutionary
Algorithms (Mitchell and Mancoridis, 2006, 2008;
Kwong et al., 2010), Fuzzy logic (loana and Doru, 2006;
Kirti et al., 2010; Shrddha et al., 2010), Soft Computing
(Harpreet and Vishal, 2011; Raj Kiran and Ravi, 2007)
and clustering techniques (Land et al., 2008; Mitchell and
Mancoridis, 2006).

In recent years, many researchers have been
concentrating on the selection of COTS components and
their studies are based on the service and qualitative
parameters like customizability, interface complexity,
portability, document quality, reliability etc., Reuse based
on object oriented techniques was proposed by Sindre
etal. (1993) who has taken four parameters for measuring
COTS components, namely, portability, flexibility,
understandability and confidence to estimate reusability.
Rotaru et al. (2005) has measured components through
parameters adaptability, complexity and compose-ability.
Sharma et al. (2008) and Gill and Balkishan (2008) have

Corresponding Author: K.S. Ravichandran ,School of Computing, SASTRA University, Thanjavur-613 401, Tamil Nadu, India
5304

Res. J. Appl. Sci. Eng. Technol., 4(24): 5304-5312, 2012

proposed interface complexity as a measure of quality of
the components. Shrddha et al. (2010) proposed to
measure reusability of software components through
customizability, interface complexity, portability and
document quality parameters.

During the last two decades, the development of
modularity based conventional systems followed the
criteria; “minimizing the coupling and maximizing the
cohesion of software modules” (lan, 1993; Allen et al.,
2001; Parsa and Bushehrian, 2004; Kwong et al., 2010).
Before the year 2008, all the researchers considered
homogenous components, whereas Kwong et al. (2010),
for the first time proposed to find the maximum cohesion
and minimum coupling by using heterogeneous software
components.

In this study, we develop an automated process of
component selection by using ANFIS approach using 14
parameters, namely, Reliability, Stability, Portability,
Consistency, Completeness, Interface & Structural
Complexity, Understandability of Software Documents,
Security, Usability, Accuracy, Compatibility,
Performance, Serviceability and Customizable. If we
consider a large number of parameters to analyze and
select low cost, most appropriate reusable components, it
will result in a time consuming process. But at the same
time we get a low cost, quality and most appropriate
components with respect to the proposed software
architecture.

Software reusability factors: Modern software system
requires the above 14 attributes to select apt COTS
components for any proposed architecture. Not all the
attributes are essential for any proposed architecture but
some of the attributes are essential for all kinds of
architecture, namely, Interface Complexity, Document
understandability, Portability, Compatibility,
Customizable and Completeness. The following are the
factors that affect the component selection efforts:

Reliability (Re): Reliability is the probability of a device
fulfilling and performing its purpose adequately for the
period of time intended under the operating conditions
encountered. Reliability at the component level employs
both qualitative information based on physical principles
and quantitative reasoning based on data available on the
component's documentation. Reliability estimates based
on physical principles, use knowledge of the coding in the
component and their suitability to various software
development conditions. It is used to estimate the
reliabilities of populations of specific components,
quantitatively. Katerina and Trivedi (2001) describes that
there is a necessity/need for modeling approaches that are
capable of considering the architecture of the software
and estimating the reliability with the consideration of
components interaction, the utilization of the components

and the reliabilities of the components and their interfaces
with other components.

Stability (St): Stability states that the system
requirements of the component are satisfied throughout its
lifetime by its services. If any of the changes take place in
the reusable component, the stability factor of that
component is to be measured for having the same
component as reusable one. Stability involves achieving
consistent and higher process yields. The reusable
component should be stable in any environment as the
components are portable to the systems where work load
is varying and many processes are depending on it.

Portability (Po): Portability can be described as the
property that supports migration of component from one
system to another with little or no modifications. Hence,
it is easily portable to specified new environments with
less cost and time. A portable component can be easily
reinstalled from distribution files to another computer of
same architecture. If the components are platform
independent, then it is highly portable and hence its
selection efforts are low. The portability of a component
correlates with its usability. The ease of portability of a
component can determine its level of reuse.

Consistency (Cy): A component is consistent if it shows
same performance for any number of times under any
load. This can be checked with the architectural
description of software systems, which assumes that the
system engineer will specify a metamodel and record the
design against that metamodel. The metamodel will
comprise of entities, relationships and constraints. The
consistency constraints of reusable components are to be
satisfied if the architecture being described is to be
consistent.

Completeness (Cs): In addition to rules for checking
consistency of architecture as it is developing, there will
be many rules that specify completeness of the
description. An example of such a rule for the
metamodels used might be that every component should
have at least one interface that it either requires or
supplies. Otherwise, the completeness property is not
satisfied. A component is complete when it satisfies all its
constraints and produces the desired output. A component
has to maintain its completeness property to enable
portability property and its reuse.

Interface and structural complexity (In): The
components are black box in nature where the source code
is not available. Application may interact with the
components, only through the well-defined interface.
Interface acts as a primary source for understanding,
using, implementation and maintenance of the

5305

Res. J. Appl. Sci. Eng. Technol., 4(24): 5304-5312, 2012

component. For better reusability, interface complexity
should be as low as possible. Structural Based Complexity
may be applied to identify the cross communication
among components and interior communication among
the component elements to do the particular system
requirement. If a component has more complexity then it
may not be reusable.

Understandability of software documents (Du):
Software is a collection of programs, procedures and
documentation that eases the hardware use. To understand
software component, documentation quality of software
is very crucial. The best-known metric to judge the
quality of documentation is Gunning's Fog Index, which
is a measure of the readability of a passage or text. The
Fog Index is based on length of sentences and the number
of difficult words where difficulty of a word is based on
the number of syllables in the word. Lower value of Fog
Index indicates better quality of the documentation while
higher value is a reflection of poor documentation quality.

Customizable (Cu): Customization allows the
application to be divided into a number of modules that
can be developed and maintained separately. By
implementing commonly used logic within custom
components, a suite of reusable components can be built.
One reason for customization is modification of an
existing component to satisfy the requirements of an
application. Another reason to customize a component is
to add a new logic or behavior to it. An example of
customization is to add label property to the button. The
selection of reusable component also depends on this
customization property.

Accuracy (Ac): Accuracy is the degree of closeness to a
real system. It should not be changed even after much
number of usages. Precision, the measurement how close
the values are to each other and have a close relation with
accurate values. Higher precision does not mean greater
accuracy nor vice versa, but both are important in the
calculation of the efficiency of the system. Various
applications require different accuracy levels. Accuracy
is basically related to the data quality and errors in the
dataset. As the number of errors reduce the accuracy of
component increases.

Performance (Pe): Performance can be described as
latency and response time measurement, based on user
load conditions. It further describes the system
performance in terms of stability and response time under
certain workload. It also used to investigate, verify,
measure, or validate various systems’ quality determining
attributes. By the identification of performance
bottlenecks, performance tuning can be done by
localization of a small number of performance-critical

components. Components can be internally optimized
without affecting their specification to improve
performance. Also, they can be moved between platforms,
without affecting the functionality or usability of the
application.

Security (Se): Security describes the integrity of a system
and its users. Security plays a vital role in authorization
and authentication of users. It is further used for the
secured transportation of information. Access can be
controlled through identification and authentication. To
migrate the risk and protect component, security controls
such as administrative controls which form a framework
and consist of approved written policies, procedures,
standards and guidelines, logical controls which use
software and data to monitor and control access to
information and computing systems, physical controls
which monitor and control the environment of the work
place and computing facilities are used.

Usability (Us): Usability is a quality attribute that
assesses how easy user interfaces are to use. This also
refers to methods for improving ease-of-use during the
design process. It is the effectiveness and efficiency of a
system to meet user's needs resulting in user satisfaction
and productivity. Usability is a property of any reusable
component and it serves its purpose only when the
application that uses it, is designed flexible. The quality
of reusable component can be measured through its
learning ability, efficiency, memorability, errors and
satisfaction.

Scalability (Sc): Scalability is a property to raise the
capacity (mainly, the users) of deployed system over a
period. It involves of addition of resources to the system
without any changes in the deployment architecture i.e. it
represents the ease with which a system or component can
be modified, added, or removed, to accommodate
changing load. It also represents the capability of
application services and deployment of environments to
cope with increased user requests, operations, transactions
and data volume to provide same or better performance.
Volume, software and hardware are three dimensions of
scalability. It is easy to design a component that does not
hold its state inside, whereas the scalability options are
reduced if a component holds its state.

Serviceability (Sr): It is the ease with which a deployed
system can be maintained, monitored, repaired and its
components are upgraded. If the components are
incorporated in a system its maintenance becomes
difficult as the source codes are not available. So the
Serviceability factor should ensure that the component is
maintainable. The value of a component improves with
the availability of serviceability and maintenance.

5306

Res. J. Appl. Sci. Eng. Technol., 4(24): 5304-5312, 2012

A Neuro-fuzzy technique is a combination of
artificial neural networks and fuzzy inference systems.
Fuzzy inference system is a methodology that uses fuzzy
logic to optimize the mapping of the given input and
output data sets. The decisions are made based on
mapping. The FIS process with Mamdani model involves
fuzzification, design of fuzzy-based systems using fuzzy
if-then rules, fuzzy aggregator and defuzzification.

In this section, ANFIS architecture with Mamdani
model is designed and it is used to determine the optimal
component parameters required to implement the required
software architectural design using reusable components.
ANFIS is a hybrid-learning algorithm, which is used to
identify and train the membership functions to produce
single-output. In Mamdani-type inference system, the
output membership functions are converted into fuzzy
sets. Totrain the FIS membership function parameters, LS
and BP gradient descent method combination is used.

DESIGN OF ANFIS BASED COMPONENT
SELECTION METHODOLOGY

The designed ANFIS architecture can have 14 fuzzy
inputs and one fuzzy output. The fuzzy inputs are
Reliability, Stability, Portability, Consistency,
Completeness, Interface & Structural Complexity,
Understandability of Software Documents, Security,
Usability, Accuracy, Compatibility, Performance and

Customizable, Serviceability and the fuzzy output
variable is Component suitability factor. All the fuzzy
input variables are linguistically divided into three
variables, namely Low (L), Medium (M) and High (H).
The output variable called ‘Suitability of Reusable
Components Selection (SRCS)’ is linguistically divided
into five variables, namely Low (L), Low Medium (LM),
Medium (M), High Medium (HM) and High (H); and its
membership function is given in Fig. 1. The theoretical
background, expert knowledge and Turing test can be
used to evaluate the fuzzy membership functions. The
membership diagram for the input variable ‘Reliability’ is
given below:

All input membership functions are constructed with
the help of combination of Gaussian Membership function
and Bell-shaped membership function; and triangular
membership functions alone is used to construct SRCS
membership function and it is given in Fig. 2.

The advantages of the ANFIS procedure for optimal
selection of the reusable components are:

o Of the distinct software developers, that can be
adjusted during ANN training

» Anomalies, if any, can be self corrected

« The final decision has been arrived taken into view
not merely the fuzzy design rule but also the
estimation of hybrid learning algorithm The
membership function for Fuzzy decision matrix is

Layer-1

Fig. 1: ANFIS structure for a proposed reusable component selection problem

5307

Res. J. Appl. Sci. Eng. Technol., 4(24): 5304-5312, 2012

Low Medium High
1.0

0.5

0

T

T T T T
0 01 02 03 04 O

T T 1

T T
5 06 07 08 09 10
Fig. 2: Membership function for the reusable parameter
‘reliability’

LM M HM H
101,

0.57

0

1

T T T T T T T T T
0 01 02 03 04 05 06 07 08 09 10

Fig. 3: Membership function for the output variable ‘suitability
of reusable component selection’

varying from software architecture to architecture
and it is used to determine the ‘Suitability of
Reusable Component Selection’.

A typical ANFIS architecture is given in Fig. 3,
where a square and square with rounded ends indicates an
adaptive node and circles indicates a fixed node. This
architecture has five layers and its layer-wise explanation
is given below:

Layer 1: The first layer of the designed ANFIS
architecture has 14 fuzzy input nodes, which are called
attributes of components. The normalized input and
output data are used to classify the essential requirement
of attributes of a reusable component. Gaussian and Bell-
shaped membership functions have been used to get the
output of fuzzy-featured neurons and linear membership
function is used to get the output of the non-fuzzy
featured neurons. Symbolically, it is defined as:

Oi,l = p’i, Low (X), for i=1 to 14
0i2 = M, meaiom(X), fori =1 to 14
0i3= Wi nigh(X), for =1to 14

Layer-2: There are 3" nodes used in this layer and all are
fixed node, with the product of inputs as the output and it

is labeled by 7. Based on the fuzzy decision matrix some
of the sample rules are given below:

e In the first example, let us select reusable

components for designing an Internet Architecture
Applications (IAA) oriented software development.
Then the quality of service (QoS) for IAA software
development mainly depends on the following
parameters, namely, Performance, Security,
Usability, Reliability, Consistency and completeness.
Based on the software architectural design, initially,
we have to formulate the corresponding fuzzy
decision rule table based on their requirement and
quality of service parameters. QoS parameters are
often changeable even in the same application; the
requirement specifications are different, so that the
parameters selections are also different. Hence,
common fuzzy decision table is not advisable to
follow to determine reusable components and it
always leads to less QoS. The following is the
example of the fuzzy-design rule of the reusable
component selection for web-based applications
software development.
*If (Re is in high) and (St is in low) and (Po is in
medium) and (Cy is in high) and (Cs is in high) and
(In‘is in low) and (Du is in high) and (Cu is in low)
and (Ac is in low) and (Pe is in high) and (Se is in
high) and (Us is in high) and (Sc is in low) and (Sr is
in medium) then (output-component selection for
IAA software development: SRCS is in high):

e In the second example, let us select reusable
components for designing on OCR (Optical
Character Recognition) based software development,
then QoS for OCR project mainly depends on the
parameters like, Performance, Consistency,
Portability, Customizability, Scalability and
Serviceability. In this software development,
selection of the quality OCR component is the
primary aim. In this case, performance of the
component is the percentage of the character
recognized correctly by the component; consistency
of the component is that, all kinds of input will
provide the same quality of the character recognition;
Portability of the component is that, it can be applied
to all kinds of languages, like English, French,
Germany, Urdu etc., ; Customizability of the
component is the provision of inserting other
languages or updating the same component with new
symbol of recognition; Scalability of a component is
the measure of performance in terms of ease of
accessibility, performance analysis and so on;
Serviceability is the ease with which a deployed
system can be maintained, monitored, repaired and
its components can be upgraded. The following is the

5308

Res. J. Appl. Sci. Eng. Technol., 4(24): 5304-5312, 2012

example of the fuzzy-design rule of the reusable
component selection for OCR based software
development.

If (Re is in medium) and (St is in low) and (Po is in
high) and (Cy is in high) and (Cs is in low) and (In is
in low) and (Du is in high) and (Cu is in high) and
(Ac is in low) and (Pe is in medium) and (Se is in
low) and (Us is in low) and (Sc is in high) and (Sr is
in high) then (output-component selection for OCR
software development: SRCS is in high):

e In the third example, let us select reusable

components for designing on BEA (Business
Enterprise Applications) based software
development, then QoS for full-fledged BEA
development mainly depends on services provided by
interactive product catalogue, security payment
processing, business intelligence, RFID based billing
systems, HR management, content management,
online shopping, IT service management,
manufacturing, resource planning, customer
relationship management, forms automation and
application integration. It mainly depends on the
parameters Reliability, Portability, Consistency,
Interface complexity, Customizability, Security,
Usability and Serviceability. The following is the
example of the fuzzy-design rule of the reusable
component selection for BEA based software
development.
If (Re isin high) and (St is in low) and (Po is in high)
and (Cy is in high) and (Cs is in low) and (In is in
high) and (Du is in high) and (Cu is in high) and (Ac
is in low) and (Pe is in medium) and (Se is in high)
and (Us is in low) and (Sc is in medium) and (Srisin
high) then (output-component selection for BEA
software development: SRCS is in high):

Hence, every software application development
requires a new Fuzzy-Design Rule (FDR) for selecting
reusable components through ANFIS approach. General
fuzzy-design rules sometimes lead to select, unimportant
reusable components. This is the advantage of the
proposed methodology rather other methods:
Symbolically, it is defined as:

O,k = tpe (X)) and piy (xp) and...and gy (¥14))
= pisres (2) fork=1to3%.

Each node output represents the firing strength of a rule.

The output of this layer is produced the weight value
w;, by using either max-min or max-product method. But
here we have used max-product and it is explained in
(Jang et al., 1997).

Layer-3: There are 3'* nodes assigned in this layer and
every node in this layer is fixed node labeled N. Each

node in this layer computes two constant values, namely
g; and z;, where g, = area of the compounded membership
function obtained at node i and z; = Centroid of the
compounded membership function obtained at node i.
Symbolically, the output of this layer is defined as:

O,=w,a,zfori=1,23,..,3"

Layer-4: Two nodes are used in this layer which is fixed
labeled Y. The first node computes X wi ai zi and the
second node computes X w;.

Layer-5: The single node in the fifth layer is a fixed node
labeled “/” that computes the overall output of the given
ANFIS structure. Symbolically, the output of this layer is
defined by:

O, =2waz/2w,

It is observed that the overall output of ANFIS
architecture with fixed premise parameters is:

z2=3Xw;g2z/Xw,

The optimal values of the consequent parameters can
be found by using the Least-Square Method (LSM). When
the premise parameters are not fixed, the search space
becomes larger and the convergence of training becomes
slower. This problem can be solved by use of hybrid
learning algorithm combining the LSM and the back
propagation algorithm. As the dimension of the search
space in back propagation algorithm reduces, this
algorithm converges faster. The layerl premise
parameters and the layer4 consequent parameters are
tuned in training until FIS achieves the required response.

After exporting this system to the workspace, the
network was trained using “anfis' function:

[fismat, error, stepsize, checkfismat, checkerror] =
anfis (traindata, initialfismat, trainoptions,
displayoptions, checkdata, optionalmethod).

RESULTS AND DISCUSSION

In this section, we have introduced FWRC (Fuzzy
Weighted Relational Coefficient) concepts for quantifying
fuzzy value between the reusable component parameters
and the given software architecture; and explain how the
FWRC value for the reusable components can be
evaluated between the components’ parameter and the
given software architecture. Most of the components’
parameters listed in section-2 are very difficult to quantify
and some of the informations are straight away evaluated

5309

Res. J. Appl. Sci. Eng. Technol., 4(24): 5304-5312, 2012

through reusable components’ documentation. In this
section, we explain how FWRC value of the components
parameter, namely ‘Reliability’ can be evaluated and in
similar manner the other components parameters can also
be evaluated.

e Evaluation of FWRC for the components’
parameter ‘Reliability’: From the huge volume of
reusable components available in the market, we
have to select the most appropriate and low cost
reusable components for the given software
architecture. The evaluation procedure for finding
FRC between the components’ parameter
‘Reliability’ and the proposed software architecture
is given below. Though reliability evaluation
procedure is already discussed in Raj Kiran and Ravi
(2007) through soft computing techniques. But, inthe
proposed work, first time the reliability is evaluated
through FWRC method.

In general, MTBF (Mean Time between Failures)
Calculator supports 26 most known and accepted
reliability prediction standards suggested in most of
the Reliability Prediction Software. Software
Components Failure Rate mostly depends on its past
historical data:

Let R; be the Fuzzy Weighted Relational Coefficient
(FWRC) of ‘Reliability” between the reusable
components C; and the given software architecture S;.
This can be evaluated from the following formula:

Wl-#Re(S, CJ)+ Wy, ﬂsr(i J)+ w3.ypo(si,cj)+

W4.ycy(5, CJ)+ W, ym(i J)+ WB’ﬂDu(si’C-).{.

Wy tcu(S1:C) + We. aso(S1,C;)+ Wo. 2ae($1,C) +

Wlo-lts(is CJ)+ Wy 4, (S C;)+ Wi, ycy(s C.)
)

Wi3. #Sr(s Cj)+ wyg. ﬂUs(S Cj)

R = 1)
Wy + Wo + W3 + Wy + W5 + Wg + W7 + Wg + Wg + Wy
+ Wyp + Wypp + Wiz + Wiy
where,
Mre(Si C) = Fuzzy relational value between the
software architecture S; and the reusable
component C;.
Mge (1) = Fuzzy membership function for the

parameter type ‘Reliability”’.

The value of ug(S; , C)) is obtained by using the
following procedure:

» The fuzzy value of all the 14 parameters with respect
to the given software architecture S; is given below:

5310

O Data
1.007 —— Fit o o
20907~ Y-T
S 0.96-
&
—g 0.94+
< 0.92
[*2]
S 0.90
o
11 0.88+
3 0.86
3 0.841
0.82<> T T T T T T T T T
¥ I LS Y TP
Q Q Q N Q N Q Qo Q
Target
Fig. 4: Regression curve
Hsi (R,) N Hsi(S,) N HMsi(p,) Msi(Ccy) HMsi(D,)
Re St P, Cy D,
Hsi (Cu) . Hsi (Cs) . Hsi (Ac)
C, Cs A
Hsi Hsi Hsi Hsi Hsi
Lo Hsi(r) | HsiUs) | HsiSe) | Hsi(sn)
Co Pe Us Sc Sr

Similarly, the fuzzy value of all the 14 parameters
with respect to the reusable component C; is given
below:

Hcjr,) | Hcis) | Hoi(R) | Mcic,) Hei(ln) | Hci(Dy)
+ + + + +
Re S, P, Cy I D,
. He;(c,) = Hc(cs) . Hei(A)
Cy Cs A
Hejc,) Hey(r) Hcyus) Hci(s.) Hc(sr)
+ + + + +
Co Pe Us Sc Sr
To compute,

Min{ s (R,)+ Hcj(R,)
ﬂRe(Siij)_#Re{ ()

aX(/JSi(Re)“qu(Re))

Equation (1) represents the Fuzzy Weighted
Relational coefficient value of ‘Reliability’ between
the reusable components Cj and the given software
architecture Si and its value always lies between 0
and 1. The fuzzy membership function for the
parameter is linguistically classified into three
categories, namely, Low (L), Medium (M) and High
(H). The membership diagram for the variable
‘Reliability’ is given in Fig. 4.

These fuzzy relational values are fed into the
designed ANFIS classifier and this ANFIS classifier

Res. J. Appl. Sci. Eng. Technol., 4(24): 5304-5312, 2012

0.99 angle+0.009

=
i

1

Output

=
(=}
)

%

T T

D D
S S
&8

T T T T
S Q S Q
S S S S

LR
3962 Epochs

Fig. 5: Error curve

0.9 4
0.8
0.7
£ 061
§ 054
» 0.4
0.3
0.2 | 30865900030/

01 T T T T T T T T 1

0 5 10 15 20 25 30 35 40 45

Different instances: blue actual, red using, specific FDR
green-using general FDR

Fig. 6: Comparison between the actual, generalized FDR and a
specific FDR

predicts the best ‘Suitability of Reusable
Components’. For training datasets of the reusable
components based OCR software development
projects, generalized FDR and a specific FDR based
decision making with the permissible error limit le-
05are applied. Again, the testing data sets are applied
to the ANFIS classifier and it is found that the
specific FDR based OCR software development is
closely correlated with the actual value than a
generalized FDR and it is given in Fig. 5.

Both Back propagation learning and hybrid learning
rules are used to obtain the optimized ANFIS
classifier and the optimization is achieved to 3962
epochs with permissible error le-05, regression
coefficient 0.99547 and total processing time 2.43
min (Fig. 5 and 6).

CONCLUSION

While developing enterprise business application
softwares, software developer undertakes multiple
development tasks concurrently and it consumes lot of
manpower, money and time. Reusable components
address all those drawbacks and the selection of most
appropriate, low cost and state-of-the-art quality reusable
components is a difficult task. In this paper, Neuro-Fuzzy

based approach is adopted to select optimal reusable
components efficiently and it also tackles all the
drawbacks. Further, the developed approach is validated
with three data sets for three proposed software
architecture, namely, IAA, OCR and BEA respectively
with the help of generalized FDR and a specific FDR. The
results which are determined, shows that the proposed
approach is able to predict the reusability of these
components with an acceptable accuracy. Further, we
concluded that the derivation of a specific FDR with
respect to each of the proposed software architecture is
required and it provides high accuracy than it follows a
generalized FDR.

REFERENCES

Abreu, F.B. and M. Goulao, 2001. Coupling and cohesion
as modularization drivers: Are we being over-
persuaded. Proceedings of the 5th European
Conference on Software Maintenance and
Reengineering, |EEE Computer Society,
Washington, DC, USA.

Allen, E.B., T.M. Khoshgoftaar and Y. Chen, 2001.
Measuring coupling and cohesion of software
modules: An information-theory approach.
Proceedings of the 7th International Symposium on
Software Metrics, pp: 125-134.

Chapin, N., 2002. Entropy-metric for systems with COTS
software. Proceedings of the 8th IEEE Symposium
on Software Metrics, pp: 173-181.

Gill, N.S. and Balkishan, 2008. Dependency and
interaction oriented complexity metrics of component
based systems. ACM SIGSOFT., 33(2): 1-5.

Harpreet, S. and K.T. Vishal, 2011. Neuro fuzzy logic
model for component based software engineering.
Int. J. Eng. Sci., 1: 303-314.

lan, S., 1993. Software Engineering. Addison-Wesley
Longman Publishing Co. Inc. Computing Program
Modularizations using the k-Cut Method. In:
Jermaine, C., 1999. Proceedings of the 6th Working
Conference on reverse engineering, pp: 224-234.

loana, S.and T. Doru, 2006. Specification-based retrieval
of software components through fuzzy inference.
Acta Polytech. Hung., 3(3): 121-135.

Jang, J.S.R., C.T. Sun and E. Mizutani, 1997. Neuro-
Fuzzy and Soft Computing: A Computational
Approach to Learning and Machine Intelligence.
Prentice-Hall, Upper Saddle River, NJ.

Katerina, G.P. and K. Trivedi, 2001. Architecture-based
approach to reliability assessment of software
systems. Erformance Evaluat., 45: 179-204.

Khoshgoftaar, T.M., Y. Liuand N. Seliya, 2004. A multi-
objective module-order model for software quality
enhancement. IEEE T. Evolut. Comput., 8(6):
593-608.

5311

Res. J. Appl. Sci. Eng. Technol., 4(24): 5304-5312, 2012

Kirti, S., S. Arun and S. Ashish, 2010. Component
selection efforts estimation-a fuzzy logic based
approach. Int. J. Comput. Sci. Security (1JCSS), 3(3):
210-215.

Kwong, C.K., L.F. Mu, J.F. Tang and X.G Luo, 2010.
Optimization of software components selection for
component-based software system development.
Comput. Ind. Eng., 58: 618-624.

Land, R., A. Alvaro and I. Crnkovic, 2008. Towards
efficient software component evaluation: An
examination of component selection and certification.
Proceedings of the 34th Euromicro Conference of
Software Engineering and Advanced Applications,
pp: 274-281.

Mitchell, B.S. and S. Mancoridis, 2006. On the automatic
modularization of software systems using the bunch
tool. IEEE T. Software Eng., 32(3): 193-208.

Mitchell, B.S. and S. Mancoridis, 2008. On the evaluation
of the bunch search-based software modularization
algorithm: Soft computing-A fusion of foundations.
Methodologies Appl., 12(1): 77-93.

Parsa, S. and O. Bushehrian, 2004. A framework to
investigate and evaluate genetic clustering algorithms
for automatic modularization of software systems.
Lect. Notes Comput. Sc., 3037: 699-702, DOI:
10.1007/978-3-540-24687-9_106.

5312

Raj Kiran, N. and V. Ravi, 2007. Software reliability
prediction by soft computing technique. J. Syst.
Software, 81(4): 132-140.

Rotaru, O.P., M. Dobre and M. Petrescu, 2005.
Reusability metrics for software components,
Proceedings of the 3rd ACS / IEEE International
Conference of Computer Systems and Applications
(AICCSA-05), Cairo, Egypt, pp: 24-29.

Sarkar, S., G.M. Rama and A.C. Kak, 2007. API-based
and information-theoretic metrics for measuring the
quality of software modularization. IEEE T. Software
Eng., 33(1): 14-32.

Sharma, A., R. Kumar and P.S. Grover, 2008. Empirical
evaluation of components for software components.
Int. J. Softw. Eng. Know., 18(5): 519-330.

Shrddha, S., N.W. Nerurkar and A. Sharma, 2010. A soft
computing based approach to estimate reusability of
software components. ACM Sigsoft, 35(4): 1-5.

Sindre, G., R. Convadi and E.A. Karlsson, 1993. The
REBOOT approach to software reuse. J. Syst.
Software, 30(3): 201-215.

Szyperski, C., D. Gruntz and S. Murer, 2004. Component
Software: Beyond Object Oriented Programming.
Addison-Wesley Professional, London, Boston, MA.

