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Abstract: GVF Snake is one of the most widely-used edge detection algorithms, nevertheless subject to its slow
computation. This study reveals the bottleneck and transfers the time-consuming part of this algorithm to the
GPU for better performance. In detail, this algorithm is decomposed into three parts, (1) GVF Computation,
(2) inversing a circulant matrix and (3) curve deformation. All of these parts are analyzed and designed to run
on the GPU via suitable data structures and corresponding operations. With the help of parallel computational
power of the GPU, our improved algorithm could be about 15 times as fast as is executed on the CPU.
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INTRODUCTION

Active Contour Model (Snake) (Kass et al., 1987) is
one of the most well-known edge detection technologies
in image processing and computer vision field. It defines
an energy function of a closed parametric curve, which
can achieve a local minimum when this curve converges
to the edge. In essence, it is an extremum of function
which can be solved by variational calculus. To overcome
its inherent limitation, Gradient Vector Flow (GVF) (Xu
and Prince, 1998) was proposed to be a new external
force, under which even points far away from the edge
could also be pushed toward it. It is very distinct that
GVF computation is added in addition to the original
snake deformation. Therefore, GVF Snake is not suitable
for time-sensitive applications due to its slow
computational speed.

Aiming at this performance problem, a GPU-
accelerated GVF Snake algorithm is proposed in this
study, transferring the bottleneck component to the GPU.
This transition toward real-time execution can provide
wider application prospects.

LITERATURE REVIEW

Graphics Processing Unit (GPU) evolves rapidly in
the last decade, which possesses following five features:
High-speed floating computation:

C Highly parallelism, including data and instruction
parallelism 

C I/O stream model 

C High-speed on-board memory chip 
C Flexible programmability 

At present, GPUs have not been limited within the
traditional graphic rendering any more, instead, they are
going deep into general computing (NVIDIA Corp, 2011).

In image processing and computer vision, many
fundamental algorithms are time-elapsing. Therefore,
accelerating these algorithms using GPU-related
technologies  becomes   significant  and practical. Sinha
et al. (2011) realized a basic SIFT and KLT algorithm.
Chriot and Keriven (2008) implemented SIFT/SURF
which can simultaneously track about 5,000 feature points
at the speed of 50 FPS on a Geforce 8800 M card.
Choudhary et al. (2010) provided the fundamental
principles and implementation details for bundle
adjustment executed on the GPU, which are based on the
traditional Levenberg-Marquardt optimization.

Relevant to individual vision algorithms, (Tzevanidis
et al., 2010) implemented a complete real-time 3D
reconstruction system based on visual hull and executed
on the GPU, from image segmentation, visual hull
calculation, Marching Cube (MC), surface smoothness to
texture mapping. Their work proved that almost all of the
core algorithms in a 3D reconstruction system could be
transplanted to the GPU.

In this study, the GPU will be used to accelerate the
implementation of GVF Snake.

GVF snake algorithm:  In  the  Snake  algorithm  (Kass
et al., 1987), an initial closed curve x (s) = (x (s), y (s))
deforms   under   the   internal   and   external  force  and
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converges gradually to the edge. The internal and external
forces are derived from the corresponding energy
functions. The internal energy function is defined as:

(1)( )( )E s x x dsernl
s

s ssint = ∫ +
1
2

2 2
α β

The first item in the integral represents the elastic
energy which forces the curve to shrink; and the second
term defines the bending energy which makes the curve
tend to be smooth. " (s) and $ (s) are the piecewise
weighting function, which are usually treated as constants.
The external energy is from the image itself, defining the
image energy along the curve:

(2)( )( )E E x s dsexternal image
S

= ∫

The image energy is usually defined as either of the
following two forms:

(3)( ) ( )E x y I x yimage , ,= − ∇
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The total energy is the sum of the above two energy
items:
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The core idea of Snake is to find such a curve that
makes the total energy Esnake achieve a minimum. It is a
functional extremum in mathematics, which can be solved
by the following Euler-Lagrange equation corresponding
to (5):

(6)α βx x Ess ssss image− − ∇ = 0

This equation can be understood as a force balance
equation, in which the first two items correspond to the
internal force relevant to the curve shape; and the third
item corresponds to the external force based on the image
structure. The curve would deform under the cooperative
influence of these forces and close up at the boundary.
The Snake algorithm is employed in many applications,
however, it depends on the initial curve location too much
to guarantee its convergence to concave boundaries. To
this problem, (Xu and Prince, 1998) proposed a new
representation for the external force so as to replace the -L
Eimage in (6):

(7)α βx x Vss ssss− + = 0

The V item is defined as a vector field, i.e., V (x, y)
= (u (x, y), v (x, y) , which can be figured out through the
following energy functional:

(8)( )Ψ = + + + + ∇ − ∇∫∫ µ u u v u f V f dxdyx y x y
2 2 2 2 2 2

: is a adjustment parameter and f (x, y) is the edge
map of the image taking the form in (3) or (4) (In fact, f
(x, y) = -Eimage (x, y)). Therefore, V is determined by f (x,
y), say, the image itself. The definition of (8) assures that
the gradient at the edge can be scattered far away,
therefore V is referred to as GVF. Minimizing the energy
Q is also a problem regarding functional extremum,
solved by the following Euler-Lagrange Equation for
multi-variable functions:

(9)
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where, L2 is Laplacian operator. So the Snake with this
specially defined external force V becomes GVF Snake,
which can force the curve to extend to concave regions.
However, it brings slower computation because the
introduction of GVF. We are about to run GVF Snake on
the GPU, i.e., implement (7) and (9) via GPU
acceleration. Before doing this, it is necessary to
discretize these two equations and obtain their numerical
solutions.

NUMERICAL METHODOLOGY

Computation of GVF: If u and v in (9) are viewed as
functions of time t and the right side of this equation are
written as derivatives of u and v with respect to t, the
following equations are obtained:

(10)
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Equation (10) establishes the relationship for u and v
between neighboring time points, forming an iterative
numerical scheme, whose convergent solution is the same
as (9). Let b(x, y) = f2

x(x, y) + f2
y(x, y), c1(x, y) = fx (x, y)

b(x, y) and c2(x, y) = fy (x, y)b(x, y), Eq. (10) becomes
(11):
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(11)
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Replacing pixel location (x, y) and time t respectively
with subscript i, j and superscript n, the Laplacian
operator in the above equation can be written as:
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Substitute (12) into (11), the iterative numerical
method for GVF is finally obtained:

(13)
( ) ( )
( ) ( )

u b u u u u u c

v b v v v v v v

i j
n

i j i j
n

i j
n

i j
n

i j
n

i j
n

i j

i j
n

i j i j
n

i j
n

i j
n

i j
n

i j
n

i j

, , , , , , , ,

, , , , , , , ,

+
+ − + −

+
+ − + −

= − − + + + + +

= − − + + + + +

1
1 1 1 1

1

1
1 1 1 1

2

1 4

1 4

µ µ

µ µ

We can see the result at the next iteration is just the
sum of the convolution of the current result with a
constant. How to implement (13) on the GPU will be
explained in section VI.

Deformation of snake: In GVF Snake, the deformation
of the curve is controlled by (7). If the parametric curve x
(s) is discretized into k points with i being its index, then
for the ith point, its second-order and fourth-order
derivative vector, xss and xssss, respectively equal xi+1-
2xi+xi-1 and xi+2-4xi+1+6xi-4xi-1+xi-2. Substituting them into
(7), we can obtain:
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All of the k points on the curve satisfy (14), therefore

a sparse linear equation system is formulated and can be
written into the following matrix form:

Ax ! u(x, y) = 0
Ay ! v(x, y) = 0 (15)

Again, regarding point coordinate (x, y) as a function
of time t and the right side of (15) as derivatives of (x, y)
with respect to time t, the following equation is achieved:
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Thus, an iterative scheme for the location of each
point on the curve is derived:
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The polygon formed by these points is just the
closed-form solution to the desired smooth edge.

Inversing a circulant matrix: It is obvious that (13) and
(17) are the fundamental numerical methods for
implementing GVF Snake. In (17), the inverse of A+I is
a non-negligible problem. In mathematics, A and I are all
circulant, so their sum is too. An n-order circulant matrix
C is defined as the following form Xu et al. (1999):
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Apparently, C is determined by its first row vector,
which is denoted by C = circ (c0, c1, cn-1). For C inverse,
there exists a fast algorithm which consists of three steps:

C Calculate all eigenvalues 8k of C, which is equivalent
to execute 1D DFT (Discrete Fourier Transform) on
the C’s first row vector:
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C Inverse 8k to obtain :k: :k = 1/8k.
C Execute 1D IDFT (Inverse DFT) on :k to get the first

row 0 of C-1:
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Because C-1 is also circulant, evaluating its first row
vector 0 is sufficient. If the matrix order n is just the
power of 2, the first and third step can be applied by FFT
and IFFT, which means the time complexity can be
reduced significantly. However, because this is not a
general hypothesis for most applications (e.g., in this
study, n is the number of contour points), we still adopt
the original definitions of DFT and IDFT.

Implementation details: From (13), (17), (19) and (20),
it is clear that the kernel algorithm is just operations on
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matrices and vectors, including addition and
multiplication. We have implemented these basic linear
algebra operations on the GPU.

We use OpenGL and its shading language to
accelerate the GVF Snake algorithm. OpenGL is a well-
known graphics library, supplying a lot of APIs and
extensions to interact with the display driver and finally
controlling the graphic rendering. In the rendering
pipeline, the vertex and pixel shaders are two main parts,
which are programmable via the OpenGL Shading
Language (GLSL). OpenGL and its GLSL are principally
used for fast rendering. However, they can be suitable for
general-purpose computation by means of intricate
alteration. Nowadays, applying the GPU for general-
purpose computation has become a prevalent trend.

Taking our algorithm into account, its some critical
ingredients correspond to GPU/OpenGL/GLSL concepts
in the following ways:

C Matrices: They are arrays in the system memory and
become textures after transferred to the video
memory. Each texel (texture element) in a texture can
store four 16- or 32-bit floats.

C Delivery of matrices: The OpenGL program is
responsible for the delivery of matrices between the
system memory and the video memory.

C Function modules: Implemented by the pixel
shader, which is compiled and linked on the host and
then transferred to the GPU. The pixel shader reads
data from read-only textures and writes results into
write-only textures.

C Execution of function modules: Triggered by the
OpenGL rendering instructions. Here, the primitive
rendered is a quad which is rasterized into internal
pixels within it, each of them corresponding to a
matrix element. The same copies of the pixel shader
run simultaneously on all pixel processing units,
handling each matrix element in a random order
(SIMD, Single Instruction Multiple Data). This
procedure is equivalent to evaluate each element in a
matrix.

The OpenGL extensions we used include:

C ARB_texutre_float: Allowing 16-bit or 32-bit
floating format for textures.

C ARB_texture_rectangle: Allowing texture size to be
any integer within the permitted range rather than a
power of 2 and allowing texture coordinates not to be
normalized.

C EXT_framebuffer_object: Supporting one or more
textures to be bound to a framebuffer object so as to
write calculation results directly into textures, that is,
Render-to-Texture (RTT). This functionality is very
useful for storing intermediate or temporary data. 

C ARB_shader_object and ARB_fragment_shader:
Fragment program.

The pipeline for computing GVF is demonstrated in
Fig. 1.bi, j c1

i, j c2
i, j (see (10) and (11) ) are fitted into a

texture as its x, y and z components after they are
precomputed on the CPU, while GVF is initialized as
gradient of the edge map with its u and v component
being stored in x and y channel of another texture. GVF
calculation is composed of a loop that renders a quad. The
sizes of this quad, two textures and the viewport are all
same. Calculation results are rendered into a resultant
texture via RTT. After one pass rendering, invert the input
and resultant texture and launch the next pass rendering
until GVF converges. 

For solving the inverse of A+I, we incorporate its first
and second steps (step 1 and 2) into a one (See section V),
corresponding to rendering the first quad; while the last
step corresponds to rendering the second quad (Fig. 2).
Before the rendering process is initiated, the texture signal
stores the first row of C. After the first quad is rendered,
what the texture inverse spectrum contains is :k. Because
:k are complex numbers, their real and imaginary parts
are stored respectively in x and y channels of texels. In the
second pass, the texture inverse spectrum becomes read-
only and signal becomes write-only for the sake of the
forthcoming IDFT. Once the inverse is finished, the
matrix (A+I)-1 stays in the video memory as a readable
texture for the subsequent computation. 

The last time-consuming part of GVF Snake is the
curve deformation (Fig. 3), which is described as follows:

C The initial boundary points are transferred to the
GPU as ordinary textures.

C Similar to computing GVF, a quad with its height
being 1 and width being the number of edge points is
rendered; each fragment is sent to the fragment
program and its color is calculated in terms of (17),
which is just the new position of the corresponding
contour point and is stored in the color buffer 1. In
addition, Euclidean distances between the new points
and their old counterparts are calculated and stored in
color buffer 2, in which the x, y and z channel are
respectively the new x, y coordinate and the distance
map.

C After one pass rendering, exchange the input and
output textures for contour points and continue the
next pass (step 2). If the accumulated rendering count
reaches a predefined number (e.g., 10), then go to
step 4.

C In order to confirm the collection of discrete contour
points is convergent to the true object edge, copy
color buffer 2 (the distance map) to a PBO (Pixel
Buffer Object) and use it as a VBO (Vertex Buffer
Object) where its x, y and z channel are directly
treated as conventional vertex coordinates. When
rendering these vertices, enable the depth test and
count how many vertices could pass the test, that is,
how many vertices have their z coordinates being less
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Fig. 1: Pipeline for computing GVF

Fig. 2: Pipeline for inversing a circulant matrix
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Fig. 3: Pipeline for snake deformation

than a predefined value. If such vertices occupy the
majority of all vertices which means the detected
edge is to be convergent, terminate this algorithm;
otherwise go to step 5.

C Transfer the current collection of contour points back
to the system memory and execute the culling and
interpolation on the CPU to keep uniform and
intensive distances between any two neighboring
points. Use this new point set as a new initial
boundary, then go to step 1.

EXPERIMENTAL RESULTS

We run our GPU version of GVF Snake on Intel Core
i3-530 with 2G DDR-1333 system memory. The graphic
card used is Yeston GT240-TC512GD5 standard edition
(core name GT215). Edge detection results on some
synthesized and real images are displayed in Fig. 4, which
are exactly same as the results by CPU computation. 

Fig. 4: Some edge detection results

From Table 1 we can see that the GPU version of
GVF Snake is about 15 times faster than the CPU version.
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Table 1: Performance comparison between CPU and GPU version
Image Size CPU time (ms) GPU time (ms)
U-shape 300x300 8,936 672
Room 300x300 8,847 624
Cat 200x200 4,173 335
Apple 308x217 6,395 417

The number of deformation was preset to an estimated
constant (see the step 3 of curve deformation in the
previous section), which means that either CPU or GPU
computation time could be influenced by this parameter.
However, this does not hamper performance comparison
between these two versions.

CONCLUSION

In this study, bottleneck parts of GVF snake are
analyzed, which are then transferred to the GPU to
accelerate their computation by means of both powerful
parallel capacity of GPU and adequate operations/data
structures. In practical use (e.g., edge detection for
moving objects in a video stream), the continuity existing
either in GVF or in contour deformation can be utilized to
reach real time tracking, concretely, by treating the result
of the current frame as input for the next frame.
Therefore, it may provide a mighty support for the real
time application of GVF Snake. 
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