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Abstract: As a continuation of our previous published results, in this study, we propose some results on
passivity of switched Hopfield neural networks without online learning. First, a new matrix norm based
condition for passivity of switched Hopfield neural networks is proposed. Second, a new passivity condition
in the form of Linear Matrix Inequality (LMI) for switched Hopfield neural networks is proposed. In contrast
to the existing result, the proposed conditions ensure asymptotic stability, but also passivity from the external
input vector to the output vector without online learning.  
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INTRODUCTION

Since Hopfield neural networks were introduced by
Hopfield (Hopfield, 1984), they have been widely studied
in theory and applications, including continuous-time and
discrete-time settings. Meanwhile, they have been
successfully applied to signal processing, pattern
recognition, associative memories, and optimization
problems, and so on (Gupta et al., 2003). Recently, by
integrating the theory of switched systems (Lee et al.,
2000; Daafouz et al., 2002) with Hopfield neural
networks, switched Hopfield neural networks were
introduced to represent several complex nonlinear
systems efficiently (Huang et al., 2005; Yuan et al., 2006;
Li and Cao, 2007; Lou and Cui, 2007). Some stability
problems for these switched Hopfield neural networks
were studied in (Huang et al., 2005; Yuan et al., 2006; Li
and Cao, 2007; Lou and Cui, 2007).

The passivity theory (Willems, 1972; Byrnes et al.,
1991) is a nice tool to deal with the stability of several
nonlinear systems. The passivity framework is an
appealing approach to the stability analysis of neural
networks because we can obtain general conclusions on
stability using only input-output characteristics. Recently,
Ahn (Ahn, 2010) proposed a passivity condition for
switched Hopfield neural networks. However, this work
requires an online learning law. Unfortunately, it is
impossible to guarantee the passivity of switched
Hopfield neural networks without the online learning law.
This paper provides an answer to the question of whether
a passivity condition for switched Hopfield neural
networks can be obtained without online learning. To the
best of our knowledge, the passivity analysis of switched
Hopfield neural networks without online learning has not
been reported in the literature so far.

The objective of this study is to propose new
passivity conditions for switched Hopfield neural
networks without online learning. In contrast to the
existing passivity condition (Ahn, 2010) for switched
Hopfield neural networks, the conditions proposed in this
paper do not require the online learning law.

NEW PASSIVITY CONDITIONS

Consider the following model of switched Hopfield
neural networks (Huang et al., 2005):

(1)( ) ( ) ( )( ) ( )& ,x t A x t W x t J t= + +α α φ

where, is the state vector,( ) ( ) ( )[ ]x t x t x t Rn
T n= ∈1 ...

 is the}{A diag a a Rn n= − − ∈ ×
1,..., ( )a o k nk > =, ,...,1

self-feedback matrix,  is the connection weightW Rn n∈ ×

matrix, is the( )( ) ( )( ) ( )( )][φ φ φx t x t x t R Rn
T n n= →1 ... :

nonlinear function vector satisfying the global Lipschitz
condition with Lipschitz constant LN > 0, and J(t) 0 R is
an external input vector, is a switching signal whichα
takes its values in the finite set I = {1, 2, ..., N}. The
matrices (A", W") are allowed to take values in the finite

set at an arbitrary time. In this( ) ( ){ }A W A WN N1 1, ,..., ,

study, we assume that the switching rule " is not known
a priori and its instantaneous value is available in real
time. Define the indicator function.
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, where ( ) ( ) ( ) ( )( )ξ ξ ξ ξt t t tN
T

= 1 2, ,...,

( )ξi i it
when the switched systemisdescribed
by the i th mode A W

o otherwise
= −

⎧

⎨
⎪

⎩
⎪

1,
( , )

,

with i = 1, ..., N. Therefore, the model of the switched
Hopfield neural networks (1) can also be written as: 

(2)( ) ( ) ( ) ( )( ) ( )[ ]&x t t A x t W x t J ti
i

N

i i= + +
=
∑ ξ φ

1

where, the relation is satisfied under any( )ξii

N
t

=∑ =
1

1

switching rules.
In this study, we find conditions such that the

switched Hopfield neural network (2) satisfies:

(3)( ) ( ) ( )( )J y d x d tTt t

0 0
0∫ ∫+ ≥ ∀ ≥τ τ τ β τ τΦ ,

where $ is a nonnegative constant,  is the( )y t Rn∈

output vector of the neural network (2), and is a( )( )Φ x t
positive semi-definite storage function.

In the following theorem, a new passivity condition
for the switched Hopfield neural network (2) is proposed
without online learning.

Theorem 1:  If the following condition is satisfied: 

(4)
k P

L P
i iWi
− −

<
η
φ

2

(5)P k k P Pi i i i
T< − > > = >η η, ,0 0

where, P satisfies the Lyapunov inequality

for i = 1, ..., N, then the switchedA P PA k Ii
T

i i+ < −
Hopfield neural network (2) is passive from the external
input vector J(t) to the output vector y(t) which is defined
as .( ) ( )y t Px t=

∆
2

Proof: Consider the function V(t) = xT(t) Px(t). The time
derivative of satisfies:( )V t

(6)
( ) ( ) ( ) ( ) ( ){

( )( ) ( ) ( )}

&V t t k x t x t x t

PW x t x t PJ t

ii

N
i

T T

i
T

< − +

× +
=
∑ ξ

φ
1

2

2

By Young's inequality (Arnold, 1989), we have:

( ) ( )( ) ( ) ( )

( )( )( ) ( )( )( )
2

1

x t PW x t x t Px t

PW x t P PW x t

T
i

T

i
T

i

φ

φ φ

≤ +

−

( )≤ +P x t P W x ti
2 2 2φ( ( ))

(7)( ) ( )≤ +P x t L P W x ti
2 2 22

φ

By using (7), we obtain:

( ) ( ){ ( )
( ) ( ) ( )}

&V t t k P L P W

x t y t J t

ii

N
i i

T

< − −

× +

=
∑ ξ

φ1

2

2

2

( )( ) ( )= − − − −
=
∑ ξ η

φii

N
i i it k P L P W x t

1

2 22

(8)( ){ ( ) ( ) ( )}+ − +
=
∑ ξ ηi
i

N

i
Tt x t y t J t

1

2

If the following condition is satisfied: 

(9)k P L P Wi i i− − − >η
φ

2 2
0

for i = 1,..., N, we have:

(10)( ) ( ) ( ) ( ) ( )&V t t x t y t J ti
i

N

i
T< − +

=
∑ ξ η

1

2

Integrating both sides of (10) from to gives:0 t

(11)
( ) ( ) ( ) ( )

( ) ( )

V t V x d

y J d

i
i

Nt

i

T

o

t

− < − ∑∫

+ ∫

=
0

10

2ξ τ η τ τ

τ τ τ .

Let $ = V(0). Since V(t)$0, 
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( ) ( )

( ) ( ) ( )

y J d

x d V t

T
t

i
i

N
i

t
0

10

2

∫ +

> ∑∫ +
=

τ τ τ β

ξ τ η τ τ

 (12)( ) ( )≥
=
∑∫ ξ τ η τ τi
i

N

i

t

x d
1

2

0

Let . The relation (12)( )( ) ( ) ( )Φ x xii
N

iτ ξ τ η τ= ≥=∑ 1
2

0
satisfies the passivity definition (3).

Therefore, the switched Hopfield neural network (2)
is passive from the external input vector to the output( )J t
vector under the condition (9), which is rewritten as( )y t

W
k P

L P
i

i i2
2<

− −η

φ

,

 
P k ki i i i< − >η η,

This completes the proof. 

Corollary 1: (Zero-input State Response) When ,( )J t = 0
the condition (4)-(5) ensures that the switched Hopfield
neural network (2) is asymptotically stable. 

Proof: When , from (10), we have: ( )J t = 0

( ) ( ) ( )&V t t x ti
i

N

i< −
=
∑ξ η

1

2

(13)( )< ∀ ≠0 0, x t

This relation ensures that the switched Hopfield
neural network (2) is asymptotically stable from
Lyapunov stability theory. This completes the proof. 

If the switched Hopfield neural network (2) is
passive, the external input vector satisfying( ) ( )( )J t y t=−γ

and  for each nonzero ( )γ 0 0= ( ) ( )( )y t y tT µ > 0 ( )y t
asymptotically stabilizes the switched Hopfield neural
network (2). For example, a pure gain output
feedback can stabilize the switched( ) ( )J t y t= − µ ( )µ > 0

Hopfield neural network (2).

Corollary 2:  (Nonzero-input State Response) If the
external input vector J(t) is selected as:

(14)( ) ( ) ( )J t y t Px t= − = − >µ µ µ2 0,

the switched Hopfield neural network (2) is
asymptotically stable. 

Proof: For , the time derivative of( ) ( )J t y t= − µ
satisfies:( )V t

(15)( ) ( ) ( ) ( ) ( ) ( )& ,V t t x t y t y t x ti
i

N

i
T< − − < ∀ ≠

=
∑ ξ η µ

1

2 0 0

from (10). This guarantees asymptotic stability from
Lyapunov stability theory. This completes the proof.

In the next theorem, a new LMI based passivity
condition for the switched Hopfield neural network (2)
without online learning is proposed. The condition in the
form of LMI can be facilitated readily via standard
numerical    algorithms    (Boyd   et al.,  1994;  Gahinet
 et al., 1995). Hence, this condition is computationally
attractive.

Theorem 2: If there exist positive symmetric matrices P,
S, and a positive scalar such that:ε

(16)
A P PA L I S PW

W P I
i

T

i

T

i i+ + +

−

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
<

ε

ε
ϕ

2

0

for I = 1, ..., N, then the switched Hopfield neural network
(2) is passive from the external input vector J(t) to the
output vector y(t) which is defined as y(t) = 2 Px(t). 

Proof: Consider the function . By Young's( ) ( ) ( )V t x t Px tT=

inequality (Arnold, 1989), for any positive scalar , theε
following relation is satisfied: 

(17)[ ( ) ( ) ( )( ) ( )( )]ε φ φ
φ

L x t x t x t x tT T2

0− ≥

 By using (17), the time derivative of is :( )V t

( ) ( ){ ( )[ ] ( )

( ) ( )( ) ( ) ( )

&V t t x t A P PA x t

x t PW x t x t PJ t

i
i

N
T

i

T
i

T

i

T

≤ +

+ +
=
∑ξ

φ
1

2 2

( ) ( ) ( )( ) ( )( ) }+ −⎡
⎣⎢

⎤
⎦⎥

ε φ φ
φ

L x t x t x t x tT T2

=
⎡

⎣
⎢

⎤

⎦
⎥

+ + +

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

=
∑ ξ

φ
ε

ε φ
φ

i
i

N T
i
T

i i

i
T

t
x t
x t

A P PA L I S PW

W P I

x t
x t( )

( )
( ( ))

( )
( ( ))1

2

(18)( ) ( ) ( ) ( ) ( ){ }+ − +
=
∑ ξi
i

N
T Tt x t Sx t J t y t

1

If the LMI (16) is satisfied, we have:
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(19)( ) ( ) ( ) ( ) ( )&V t x t Sx t J t y tT T< − +

Integrating both sides of (19) from 0 to t gives:

(20)
( ) ( ) ( ) ( )

( ) ( )

V t V x Sx d

y J d

Tt

Tt

− < −

+

∫
∫

0
0

0

τ τ τ

τ τ τ

Let $ = V(0). Since V(t)$0

( ) ( ) ( ) ( ) ( )y J d x Sx d V tT T
t t

0 0
∫ ∫+ > +τ τ τ β τ τ τ

(21)( ) ( )≥ ∫ x Sx dT
t

0
τ τ τ

The relation (21) satisfies the passivity definition (3).
This completes the proof. 

Corollary 3: (Zero-input State Response) When, J(t) = 0
the LMI condition (16) ensures that the switched Hopfield
neural network (2) is asymptotically stable. 

Proof: When  from (19), we have:( )J t = 0

(22)( ) ( ) ( )&V t x t Sx tT< − ( )< ∀ ≠0 0, x t

This inequality ensures that the switched Hopfield
neural network (2) is asymptotically stable from
Lyapunov stability theory. This completes the proof.

Corollary 4: (Nonzero-input State Response) If the
external input vector  is selected as:( )J t

(23)( ) ( ) ( )J t y t Px t= − = − >µ µ µ2 0,

then the LMI condition (16) ensures that the switched
Hopfield neural network (2) is asymptotically stable

Proof: For J(t) = -:y(t), the time derivative of ( )V t
satisfies

(24)( ) ( ) ( ) ( ) ( )& , ( )V t x t Sx t y t y t x tT T< − − < ∀ ≠µ 0 0

from (19). This guarantees asymptotic stability from
Lyapunov stability theory. This completes the proof.

CONCLUSION

In this study, we have proposed new passivity
conditions for switched Hopfield neural networks based
on  matrix  norm  and  LMI. These   conditions   ensured

asymptotic stability, but also passivity from the external
input vector to the output vector. The conditions proposed
in this paper did not require any online learning law.

ACKNOWLEDGMENT

This study was supported by the Grant of the Korean
Ministry of Education, Science and Technology (The
Regional Core Research Program/Center for Healthcare
Technology Development).

REFERENCES

Ahn, C., 2010. Passive learning and input-to-state
stability of switched hopfield neural networks with
time-delay. Info. Sci., 80: 4582-4594.

Arnold, V., 1989. Mathematical methods of classical
mechanics. Springer.

Boyd, S., L.E. Ghaoui, E. Feron and V. Balakrishinan,
1994. Linear Matrix Inequalities in Systems and
Control Theory. SIAM, Philadelphia, PA.

Byrnes, C., A. Isidori and J. Willem, 1991. Passivity,
feedback equivalence and the global stabilization of
minimum phase nonlinear system. IEEE Trans.
Automat. Contr., 36: 1228-1240.

Daafouz, J., P. Riedinger and C. Iung, 2002. Stability
analysis and control synthesis for switched systems:
A switched Lyapunov function approach. IEEE
Trans. Autom. Con trol., 47(11): 1883-1887.

Gahinet, P., A. Nemirovski, A.J. Laub and M. Chilali,
1995. LMI Control Toolbox. Mathworks.

Gupta, M., L. Jin and N. Homma, 2003. Static and
Dynamic Neural Networks. Wiley-Interscience.

Hopfield, J., 1984. Neurons with grade response have
collective computational properties like those of two-
state neurons. Proc. Nat. Acad. Sci., 81: 3088-3092.

Huang, H., Y. Qu and H. Li, 2005. Robust stability
analysis of switched Hopfield neural networks with
time-varying delay under uncertainty. Phys. Lett. A.,
345: 345-354.

Lee,  S., T. Kim and J. Lim, 2000. A new stability
analysis of switched systems. Automatica, 36 (6):
917-922.

Li, P. and J. Cao, 2007. Global stability in switched
recurrent neural networks with timevarying delay via
nonlinear measure. Nonlinear Dyn. 49(1-2): 295-305.

Lou, X. and B. Cui, 2007. Delay-dependent criteria for
robust stability of uncertain switched Hopfield neural
networks.   Int.   J.   Automation   Comput.,  4(3):
304-314.

Willems, J., 1972. Dissipative dynamical systems, part I:
General  theory. Arch. Rational Mech. Anal., 45:
321-351.

Yuan, K., J. Cao and H. Li, 2006. Robust stability of
switched Cohen-Grossberg neural networks with
mixed time-varying delays. IEEE Trans. Syst. Man
Cybernetics, Part B, 36(6): 1356-1363.


