The Optical Character Recognition for Cursive Script Using HMM: A Review

1,3Saeeda Naz, 1Arif I. Umar, 1Syed H. Shirazi, 2Muhammad M. Ajmal and 2Salahuddin
1Department of Information Technology, Hazara University, Mansehra, Pakistan
2COMSATS Institute of Information Technology,
GGPGC No.1, Department of Higher Education, KPK, Abbottabad, Pakistan

Abstract: Automatic Character Recognition has wide variety of applications such as automatic postal mail sorting, number plate recognition and automatic form of reader and entering text from PDA's etc. Cursive script’s Automatic Character Recognition is a complex process facing unique issues unlike other scripts. Many solutions have been proposed in the literature to solve complexities of cursive scripts character recognition. This paper present a comprehensive literature review of the Optical Character Recognition (OCR) for off-line and on-line character recognition for Urdu, Arabic and Persian languages, based on Hidden Markov Model (HMM). We surveyed all most all significant approaches proposed and concluded future directions of OCR for cursive languages.

Keywords: Character, hidden Markov model, ligature, optical character recognition

INTRODUCTION

Optical Character Recognition (OCR) converts text images into text file. The main objective of OCR is to mimic the reading ability of human being with accuracy and high speed. Its applications include the following among many others; machine reading for handicapped persons, preservation and online access of historical documents and advanced scanning.

The printed OCR systems for Latin, Japanese and Chinese Languages have attained maturity. Several commercial products of OCR for these languages are available. The handwritten OCRs are far behind from the maturity level. There is a huge demand for improved products of handwritten OCRs. Printed noisy text images and text images captured by camera also require attention of the researchers in the field of English OCR. The cursive languages are spoken, written and understood across the globe. These languages among others includes; Arabic, Persian (Farsi), Urdu, Uyghur, Jawi, Pashtu and Sindhi. The historical literature of these language contain great academic treasure in several domains like poetry, history, spiritualism, astrology, medicines and mystics. Each of the cursive languages has its own set of alphabets, vocabulary, grammar rules, fonts and writing style. The popular fonts styles are; Naskh, Riqa, Nasta'liq, Thuluth, Kofi and Diwani. The most popular and common writing styles are Naskh and Nasta'liq. Urdu is generally written in Nastaliq. Arabic and Persian use Naskh fonts for writing. Few commercial products of Printed Arabic OCR in rudimentary forms are available. The cursive nature and forms of letter depending on its position to create words are creating challenges for researcher in the segmentation stage of the character recognition. Urdu language unlike Arabic language has some peculiarities due to more alphabet/letters and some unique properties. These peculiarities make OCR in Urdu language more complex and challenging. But the tradeoff between the efforts of producing printed OCR for Urdu and its potential befits urge us to devote our energies to this significant domain of the research. It will empower automatic conversion of ancient Urdu, Persian and Arabic documents into printed books. This will result in the availability of huge ancient oriental academic treasurer on the web, which is now available in printed form in libraries. Despite of its significance, currently no commercial OCR product for Urdu language is available. Many researchers are investigating the complexity and challenges offered by the Urdu language to produce an optimal OCR product for Urdu language.

Cursive languages: Cursive script languages are written cursively from right to left. The letters are joined with neighbour letters usually within word or sub-word. The shape of letters and whether joined or standalone depends on their property (Naz et al., 2013a). Logically, a letter could have one shape or two to four different shapes depending on its position in the sub-word or word. A letter is in connected sequence or in isolated form could appear at the start of the word, at middle of word or at end of the word. This is called joiners. However, some letters have two forms namely final and isolated. It may join the letter which it follows but do not join the letter that follows it. These are called non-joiners.
For example first letter in Noor is the joiner and therefore it has four shapes. The second and the last letters in Noor are non-joiners and have two forms as shown in Fig. 1. The shape of these letters depends on the context. A sentence in Urdu, Persian and Arabic is shown in Fig. 1 to understand the writing styles of the languages.

Basic terminologies: The commonly used terminologies in OCR are following:

Word definition: It is composition of one or more than one ligature e.g., the word Ahmad "احمّد" have 2 ligatures and Hamad "حامّد" has one ligature.

Primary or main ligature definition: The primary ligature is the longest continuous portion of the character that is written before lifting the pen. It is a character which is unique combination of more than one letters. It is also called PWs (Pieces of Words) and main strokes in some papers (Husain et al., 2007) e.g., there are 3 ligatures in "ﮏﺸﺎ" i.e., "ﮏ", "ﺸﺎ", and "عاش" and one ligature in "ﺞشن".

Secondary ligature definition: The secondary ligature is a set of diacritics, dots that are written up or bellow after the main ligature.

Primitives definition: It is the basic geometrical shape.

Strokes definition: These are the basic sub-pattern that cannot segment more.

Optical character recognition (OCR): On the basis of input mode, OCR is classified as offline and online. The block diagram of a character recognition system is shown in Figure 2. The offline OCR deals with the image of the already written text --- handwritten and machine printed --- and its input is acquired by means of an optical scanner or digital camera. In contrast, in the online OCR, the input text is obtained directly by means of tablet, a PDA, or a stylus. The online character recognition is perhaps easier than its offline counterpart because extra information, such as stroke coordinates time information and handwriting style of the user, is available. A typical OCR system may include some or all of the five mechanisms, namely the:

- Image acquisition
- Pre-processing

Fig. 2: Steps of OCR

- Segmentation
- Feature extraction
- Recognition/classification (Al-Badr and Mahmoud, 1995) followed by some post-processing.

The rest of the paper will present a comprehensive literature review of the OCR methods proposed based on HMM.

ISSUES IN CURSIVE SCRIPT LANGUAGES

The literature reflects that Arabic language out of the prevailed cursive script languages has been favorite choice of the researchers for construction of OCR. Persian language is the next. Urdu being a popular language of the glob have not yet get the require attention of the researcher consequently not a single OCR is materialized for it. Some serious effort have
been made in this direction for Urdu and Jawi (Spoken in Malaysia) unlike other languages like Pashtu and Sindhi. Urdu scripts are complex and more challenging because of; large set of characters, similar multi-shaped characters, context sensitivity and position of character (Razzak et al., 2009; Satti and Saleem, 2012). The Nasta'liq font style adds further to challenges because language is written diagonally with no fixed baseline, no standards for slopes, context sensitivity caused by filled or false loops and character/ligature overlaps (Slimane et al., 2012).

The Nastaliq font style poses some extra challenges as compared to the Naskh style, these are:

- Diagonality is introduced by Nasta’liq writing style in Urdu that makes this language more complex for researcher in the field of OCR.
- Text written in Nasta’liq takes less space horizontally due to diagonality introduced by the Nasta’liq, which adds complexity in segmentation and recognition of the text.
- The filled loops in Wao, Fay, Meem and Khaaf create confusion in recognition of these letters after thining process.
- The number and position of dot with respect to primary ligature also add to challenges.
- The intra-ligature and inter ligature overlapping in Urdu text being Arabic based text add to challenges in the segmentation and recognition (Naz 2013).
- A baseline is a virtual line on which the text is joined (Husain et al., 2007; Naz et al., 2013b). Nastaliq style unlike the Naskh style has multiple baselines due to digonality nature of Nasta’liq that makes baseline a difficult task.

Generally, the projection profile technique is utilized for Arabic script, which calculates the horizontal profile (called histogram in some texts) of text lines (due to the latter's bulky interline spacing) and segments where the profile has zero values. Yet, this technique is not applicable to Nasta’liq, where the ligatures overlap in horizontal/vertical projections and display minor spacing among the lines.

HMM BASED CURSIVE SCRIPT CHARACTER RECOGNITION

In the literature, Hidden Markov Models (HMMs) have been used to recognize various types of observation sequences including speech, word spotting, on-line handwriting and off-line handwriting in document images. We describe the predominant application of HMMs given by segmentation-free and segmentation based recognition of cursive script for off-line and on-line handwritten ligatures, words or text lines. For HMM, the scanned images of paragraphs will be segmented into text lines or words and the ground values/labels are written as a segmentation cue point for letters in segmentation based recognition system. In segmentation free approach, text line will separated into ligatures or sub-words and code book will be generated for each ligature groups and then subjected to number of steps of OCR. The former approach uses the HMM encoder and the latter approach employs the HMM evaluator, (Fig. 3).

A Hidden Markov Model (HMM) is used by (Javed 2007) for classification of segmented stokes of the ligature by calculating the DCTs as features for improvement of performance of recognition. In another effort, HMM toll kit (HTK) is trained as a classifier for the recognition of Nastaliq font style (Javed et al., 2010). A post processing step is employed which consequently significantly enhanced the accuracy of classifier results. For testing, 3,655 ligatures are used from 5,000 common words and 3,375 ligatures are accurately identified. The authors claimed 92% recognition accuracy.

The method specified in Akram et al. (2010) is an extension of Javed, 2007 their scheme extracts Nasta’liq ligatures independent of the font size. The Splines method is implemented on the input image of the ligature, resulting in the outlines. To control the points in the splines and the input ligatures the outlines are then scaled and it is resized to train the OCR. The scaled outline is then converted to the image form so that the system could accomplish recognition. The proposed system was assessed on the Urdu single character ligatures and attained 98% accuracy rate for the manually generated data and a 96% accuracy rate for the data scanned from several books and magazines.

The BBN Byblos Pashtu OCR System (Decerbo et al., 2004) applied a script independent OCR by implementing fourteen-state HMMs for Pashtu language. This system is also tested successfully for English, Arabic and Chinese documents.

An extension of their previous work is suggested in (Razzak et al., 2010), which applies the fuzzy logic and HMM for on-line recognition of 1,800 ligatures for the Nasta’liq and Naskh fonts. For each stroke by the HHM the dataset is trained, while further classification is
performed through the application of the fuzzy logic rules to the starting and ending shape of the characters. The proposed hybrid approach provides reasonable result for large deviation in handwritten strokes and declines the comparison and computation. Finally, the mapping of secondary strokes and analyzed primary strokes are done by using the fuzzy logic for the recognition of valid ligature. The authors reported 87.6% accuracy for the Nasta'liq font and 74.1% accuracy rate for the Naskh font.

A related on-line multi-font numeral recognition system is proposed by (Razzak et al., 2009). It depends on HMM, fuzzy rules and a combination of the two in the case of Arabic and Urdu. They explored the similarities and dissimilarities of the two languages to design both the on-line and off-line OCRs. All the three methods reported significantly accurate results. The proposed system is analyzed on 900 samples that were taken from 30 trained users. It demonstrated an accuracy of 97.4, 96.2 and 97.8% by each method respectively the authors reported that the proposed system has some unsolved issues caused by the complexities of the languages Ghods and Kabir (2010) used extracted features from online isolated Persian letters and classified these features using ID3. The features include horizontal and vertical directions, angles, number of strokes, x-y coordinates. Ghods et al. (2013a) in another work combined two separate horizontal and vertical trajectories for features extraction for on-line handwritten recognition. Two classifiers were trained on these trajectories. Finally, these results fused and used as an input to the HMM classifier. The consequence of delayed strokes such as the accents for building of Persian on-line words recognition with full ligatures for classification through HMM model was studies by the same authors. The delayed strokes concepts reduced the size of the lexicon. The proposed system was evaluated on "TMU-OFS" dataset consisting of 1000 Persian ligatures (2013b).

Discrete HMM and Kohonen self-organizing vector quantization methods have proposed for recognition of 17820 handwritten Farsi/Arabic words (Dehghan et al., 2001). The features selected by histogram of chain-code and sliding window and information of neighbourhood stored in the "Self-Organizing Feature Map" (SOFM). The recognition rate was obtained upto 65%.

In Sajedi et al. (2007), the Persian characters were divided in 18 groups using HMM and got 90.8% accuracy rate.

Aulama et al. (2011) proposed HMMs combined with the Viterbi algorithm for characters recognition at the sub-word level using extracted statistical information and estimated probabilistic parameters for HMM.

A system is implemented in two stages for recognition of Arabic words by Al-Hajj et al. (2007). First, three classifiers (HMM) using likelihood were employed with features based on pixels to find out the best top ten candidates. Second the sum rules, the vote rules and then neural network implemented on the classifiers' results for getting combined decision. The recognition rate was 90.96% using the handwritten IFN/ENIT database. These arrangements were used in (Mohamad et al., 2009) for performance improvement. Three homogenous classifiers using HMM was employed.

The recognition rate of proposed system on IFN/ENIT (v1.0p2) with lexicon (1,000 entries) was 90.26, 94.71 and 95.68% for top 1, top 2 and top 3.

Semi Continuous Hidden Markov Model (SCHMM) was employed in (Benouareth et al., 2006; Benouareth et al., 2008; Benouareth et al., 2006a) for recognition of Arabic words in unconstrained environment on handwritten IFN/ENIT data base using holistic approach for segmentation. The combination of structural and statistical features were mined using sliding window approach, which were operated according to uniform and non-uniform schemes (constant and variable width) of segmentation of images into vertical frames. Further, they considered morphological complexities of hand-written letters and for this they analysed minima and maxima of the vertical projection histogram. For uniform segmentation, 81.02 and 91.74% recognition rates were achieved for top 1 and top 10. For non-uniform segmentation, 83.79 and 92.12% recognition rates were achieved for top 1 and top 10. They also used and compared distributions of Gauss, Gamma and Poisson for the explicit state duration modelling and concluded that continuous distribution gave better results for Arabic character recognition than discrete distribution with non-uniform segmentation.

Another system based on HMM (semi-continuous 1-dimensional) in (El-Abed and Margner, 2007) used the similar strategy for Arabic handwritten words. In four directions of the word, the skeleton's length computed from five equal horizontal zones were used for statistical features extraction. The recognition rate was upto 89.1 and 96.4% for top 1 and top 10 candidates and evaluated on IFN/ENIT (v1.0p2) database.

A hybrid method of a HMM classifier followed by re-ranking trained on V1.0p2 (26,459 words written by 411 writers) and V2.0p1e (32,492 words by more than 1000 writers) of IFN/ENIT database in (AlKhateeb et al., 2011) for recognition Arabic handwritten word. Sliding window used for extraction of intensity features for HMM and structural/topological features were extracted for re-ranking. The proposed scheme achieved recognition rate 83.55% with fusion of re-
ranking and 82.32% for top 1 on v2.0 p1e and 89.24% with re-ranking and 86.73% without for v1.0 p2.

AlKhattee et al. (2011) presented Hidden Markov Models (HMMs) and Dynamic Bayesian Networks (DBNs) using DCT coefficients/mean values of the overlying blocks of the complete Arabic word for HMM and pixels of the entire Arabic word for handwritten Arabic words recognition on IFN/ENIT database consisting 32,492 Arabic words. They compared experimental results of HMM (nearly 83%) and DBN (66.56%) which showed that HMM outperformed than BDN.

Kundu et al. (2007) employed Variable Duration HMM (VDHMM) with two lexicons using 45 structural and statistical features. The authors evaluated the proposed system on IFN/ENIT database and testified 60% recognition rate. Hidden Markov Models (HMM) classifier proposed for off-line handwritten Arabic word Recognition without explicit segmentation on IFN/ENIT database (Margner et al., 2006). Sliding window and statistical Karhunen-Loeve Transform (KLT) were employed for feature selection and provide the recognition rate of 74.69%.

Multiple HMM scheme had presented by Hamdani et al. (2009) using both on-line and off-line features for off-line Arabic handwritten. In this scheme, Pixel values, Densities and Moment invariants, Pixel distribution and Concavities for off-line features and statistical method in (Benouareth et al., 2006) for On-line features and got 49.48-63.90% and 81.72% recognition rate by single classifier and multiple classifier, respectively.

Dreuw et al. (2009) used constrained maximum likelihood linear regression (CMLLR) transformed features for training the HMM and tested on IFN/ENIT database and displayed recognition accuracies of 94.18 and 88.78% for set-d (6735) and set-e (6033), respectively.

The multistream hidden Markov models with lexicon (2100 words) employed for recognition of off-line Arabic handwritten word through directional and colour density features without explicit segmentation and achieved an accuracy of 79.6% in (Kessentini et al., 2010). In Elbaati et al. (2009) narrated Arabic handwritten OCR using HMM. Beta-elliptical extractor and dimension of Arabic word/letters used for feature extraction and came out with recognition rate of 54.13%.

Ahmed and Azeem (2011) used ADAB Database for online Arabic text recognition sing HMM htk toolkit. They removed the delayed stokes and used directional, acceleration and delta features and claimed accuracy rate between 89.72% and 95.27% on different sets. In another effort Azeem and Ahmed (2012) combined the offline and online features for online Arabic text recognition using HMM htk toolkit.

In Azeem and Ahmed (2013) fixed the width of the input word to three pixels and also fixed the space among the various parts of the word to an experimental threshold in the pre-processing step, which improved 3.6% performance. The non-uniform segmentation adopted which also improved the performance up to 3.97%. The images divide into multi concavity layers with adding new concavity spaces and then concavity space and sliding window used to extract concavity and densities of the foreground pixel, respectively. Three HMM models used for slant correction and recognition off-line Arabic handwriting words. The proposed system reported 93.44% recognition rate on IFN/ENIT database with lexicon.

In 2008, Natarajan proposed a script-independent approach for multi-lingual BBN Byblos off-line handwriting recognition (OHR) based on 14-state left to right Hidden Markov Models (HMM) using percentiles, vertical and horizontal derivatives, angle and correlation features. For more detail of BBN Byblos OCR, refer to (Natarajan et al., 2001) for feature extraction and recognition. It was named as OHR. The OHR system experimented on 26,459 images of IFN/ENIT database consisting of 4 sets a, b, c and d. and obtained 89.4% recognition rate. The result of BBN Byblos OCR system, Natarajan et al. (2008) improved by incorporating the calculated baseline into percentile feature calculation and showed the improvement of 1% absolute gain and 3.1% relative gain in recognition accuracy on 1404 handwritten Arabic words (1389K training words and 15K testing words) by Natarajan et al. (2011). In this study, features like Percentiles of intensity values (Menasri et al., 2007) Angle, Correlation, Energy (PACE) and Gradient, Structure and Concavity (GSC), were extracted in (Xiang et al., 2012).

The connected component was employed using sliding window for training of HMM for recognition of different font/size/font and size of Arabic printed text having ultra-low resolution (Slimane et al., 2012). The authors reported recognition rate of 69.9% by global multi-font system for word and using cascading multi-font system, the average recognition rates was 93.7% for word on the Arabic Printed Text Image (APTI) database, (Slimane et al., 2009) consisting of 113284 distinct words and 45, 313, 600 total words.

Cao et al. (2012) demonstrated 14-state HMM based on different features which are image intensity percentile, local angle and correlation signifying the orientation of the stroke, frame energy, concavity, gradient and Gabor filter for Arabic handwritten, printed and mixed pages in The Word Error Rates of 26.4% for handwritten lines, 9.4% for typed written lines and 20.2% for mixed lines depending on the 25736 transcript pages with dictionary (600K words).

Awaid and Khorsheed (2012) demonstrated HMM classifier based on Run-Length Encoding (RLE)
<table>
<thead>
<tr>
<th>Authors</th>
<th>Language</th>
<th>Features</th>
<th>Classification</th>
<th>Dataset</th>
<th>Accuracies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Javed et al. (2010)</td>
<td>Urdu</td>
<td>DCT</td>
<td>HMM htk toolkit</td>
<td>1259</td>
<td>92%</td>
</tr>
<tr>
<td>Akram et al. (2010)</td>
<td>Urdu</td>
<td>DCT</td>
<td>HMM htk toolkit</td>
<td>569</td>
<td>98% and 96% (1 character ligatures), 89% (2 characters ligatures)</td>
</tr>
<tr>
<td>Decerboet et al. (2004)</td>
<td>Pashtu</td>
<td>Statistical</td>
<td>HMM htk toolkit</td>
<td>27000</td>
<td>1.6% CER and 5.1% WER</td>
</tr>
<tr>
<td>Razzak et al. (2010)</td>
<td>Urdu</td>
<td>Structural and statistical</td>
<td>HMM and Fuzzy</td>
<td>1800</td>
<td>98% and 96% (1 character ligatures), 89% (2 characters ligatures)</td>
</tr>
<tr>
<td>Razzak et al. (2012)</td>
<td>Urdu</td>
<td>Fuzzy rules</td>
<td>HMM and Fuzzy</td>
<td>1800</td>
<td>89.4%</td>
</tr>
<tr>
<td>Razzak et al. (2009a)</td>
<td>Urdu</td>
<td>Fuzzy rules</td>
<td>HMM and Fuzzy</td>
<td>900</td>
<td>97.4%, 97.8% and 96.2%</td>
</tr>
<tr>
<td>Dehghan et al. (2001)</td>
<td>Farsi</td>
<td>Histogram of chain-code and sliding window</td>
<td>Discrete HMM and Kohonen self-organizing vector quantization</td>
<td>17820</td>
<td>65%</td>
</tr>
<tr>
<td>Ghods and Kabir (2010)</td>
<td>Online isolated Farsi letters</td>
<td>Structural (direction, angles, number of strokes etc.)</td>
<td>ID3</td>
<td>4000</td>
<td>94-99%</td>
</tr>
<tr>
<td>Ghods et al. (2013b)</td>
<td>Farsi ligatures</td>
<td>Fusion of statistical and structural</td>
<td>HMM</td>
<td>1000 Online ligature samples</td>
<td>Testing: 87.5% Training: 92.9%</td>
</tr>
<tr>
<td>Ghods et al. (2013a)</td>
<td>Farsi</td>
<td>Structural</td>
<td>HMM with lexicon reduction, HMM with lexicon</td>
<td>32492</td>
<td>Top1: 85.2% Top10:96.7% 74.69%</td>
</tr>
<tr>
<td>Margner et al. (2006)</td>
<td>Arabic</td>
<td>Sliding window and statistical (KLT)</td>
<td>Multistream HMM with lexicon</td>
<td>26492</td>
<td>83.55%</td>
</tr>
<tr>
<td>Kundu et al. (2007)</td>
<td>Arabic</td>
<td>Structural and statistical</td>
<td>Variable length HMM with lexicon</td>
<td>32492</td>
<td>60%</td>
</tr>
<tr>
<td>Dreuw et al. (2009)</td>
<td>Arabic</td>
<td>CMLLR transform</td>
<td>HMM</td>
<td>6735 and 6033</td>
<td>94.18% & 88.78%</td>
</tr>
<tr>
<td>Elbaati et al. (2009)</td>
<td>Arabic</td>
<td>Directional and colour density by Beta-elliptical extractor</td>
<td>HMM</td>
<td>32492</td>
<td>54.13%</td>
</tr>
<tr>
<td>Kessentini et al. (2010)</td>
<td>Arabic</td>
<td>Directional and colour density</td>
<td>Multistream HMM with lexicon</td>
<td>32492</td>
<td>63.5%-70.5%</td>
</tr>
<tr>
<td>AlKhateeb et al. (2011)</td>
<td>Arabic</td>
<td>Sliding window and structural</td>
<td>HMM and re-ranking</td>
<td>26492 and 32492</td>
<td>83.55%</td>
</tr>
<tr>
<td>Hamdani et al. (2009)</td>
<td>Arabic</td>
<td>Densities and moment invariants, pixel values, pixel distribution and concavities, on-line features</td>
<td>Multiple HMM Single HMM</td>
<td>32492</td>
<td>81.93%</td>
</tr>
<tr>
<td>Benouareth et al. (2006)</td>
<td>Arabic</td>
<td>Statistical and structural</td>
<td>HMM</td>
<td>26459</td>
<td>49.48%-63.90%</td>
</tr>
<tr>
<td>Benouareth et al. (2008)</td>
<td>Arabic</td>
<td>Pixels densities, concavities based on baselines and 9-structural based on skeleton</td>
<td>HMM</td>
<td>26459</td>
<td>88.12%</td>
</tr>
<tr>
<td>Al-Haji et al. (2007)</td>
<td>Arabic</td>
<td>Pixels densities</td>
<td>Fusion of multiple HMM and neural network</td>
<td>26, 459</td>
<td>90.96%</td>
</tr>
<tr>
<td>Mohamad et al. (2009)</td>
<td>Arabic</td>
<td>16 Distribution features (Pixel densities) and 12 features representing concavity configuration with respect to baselines</td>
<td>Multiple homogeneous HMM</td>
<td>26, 459</td>
<td>Less than 91%</td>
</tr>
</tbody>
</table>
Table 1: Continue

<table>
<thead>
<tr>
<th>Authors and Years</th>
<th>Language</th>
<th>Features</th>
<th>HMM Toolkit</th>
<th>Recognition Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khorsheed (2007)</td>
<td>Arabic</td>
<td>Statistical features</td>
<td>HMM htk toolkit (mono-model) HMM htk toolkit (Tri-model) 14-states HMM</td>
<td>70.2% 85.9% 89.4%</td>
</tr>
<tr>
<td>Natarajan et al. (2008)</td>
<td>Arabic</td>
<td>Percentiles, angle and correlation Baseline-dependent Percentiles, Angle, Correlation, Energy (PACE) and Gradient, Structure, Concavity (GSC)</td>
<td>14-states HMM</td>
<td>70.2%</td>
</tr>
<tr>
<td>Natarajan et al. (2011)</td>
<td>Arabic</td>
<td></td>
<td></td>
<td>90.4%</td>
</tr>
<tr>
<td>AlKhateeb et al. (2011a)</td>
<td>Arabic</td>
<td>DCT coefficients/mean values of the overlapping blocks of the whole Arabic word</td>
<td>HMM</td>
<td>32, 492 nearly 83%</td>
</tr>
<tr>
<td>Cao et al. (2012)</td>
<td>Arabic</td>
<td>Image intensity percentile, local angle and correlation representing the orientation of the stroke, frame energy, gradient, concavity, and Gabor filter</td>
<td>HMM</td>
<td>25736 transcribed pages</td>
</tr>
<tr>
<td>Awaida and Khorsheed (2012)</td>
<td>Arabic</td>
<td>Run-length encoding (RLE)</td>
<td>HMM</td>
<td>94, 418 96.65%</td>
</tr>
<tr>
<td>Azeem and Ahmed (2012)</td>
<td>Arabic</td>
<td>Directional, aspect, number of foreground pixels and gradient</td>
<td>HMM</td>
<td>ADAB database 97.78%</td>
</tr>
<tr>
<td>Menasri et al. (2007)</td>
<td>Arabic</td>
<td>Baseline-dependent</td>
<td>HMM and NN IFN/ENIT and</td>
<td>87%</td>
</tr>
<tr>
<td>Slimane et al. (2012)</td>
<td>Arabic</td>
<td>Connected component</td>
<td>HMM</td>
<td>45, 313, 600 69.9%-93.7%</td>
</tr>
<tr>
<td>Xiang et al. (2012)</td>
<td>Arabic</td>
<td>Densities of foreground, concavity and arc length</td>
<td>HMM</td>
<td>26459 97.99%</td>
</tr>
</tbody>
</table>

features, (Khorsheed and Al-Omari, 2011) using 94,418 words images from APTI (Arabic Printed Text Image) database. The achieved average recognition rate on the letter level was 96.65%. The same authors put forward HMM and nearest neighbour classifier along with generation of angle, distance, horizontal and vertical span features for recognition of independent writer off-line handwritten Arabic numeral in (Mahmoud, 2008). Using a database of 21,120 digits (2171 numbers), that has written by 44 writers. The average recognition rates were 97.99% and 94.35% using the HMM and the nearest neighbour classifiers, respectively. The misclassification was nearly 1% in the case of HMM.

Awaidah and Mahmoud (2009), presented scale invariant and translation invariant technique HMM classifiers for off-line handwritten Arabic numerals recognition with multi-resolution feature extraction methodology using GSC algorithm. The features were edge curvature in a neighbourhood of a pixel, short strokes types which span number of pixels and certain concavities that can span across the image. Different grid sizes have used for segmentation of an image. The technique uses a database of 21120 digits was used. This technique gave average of 1.01% higher recognition rate than the previous one with overall 99.0% recognition rate of accuracy. Azeem and Ahmed (2012) used off-line HMM to improve the results of HMM-based on-line Arabic handwriting recognition system presented by combining the efficient on-line features and off-line features (dividing the image into non uniform heights). The recognition rate was improved by 2.38%.

The HMM and NN classifiers were combined in (Menasri et al., 2007) using IFN/ENIT benchmark database based on explicit grapheme segmentation and Seventy-four baseline dependent features vectors. Hidden Morcov Model Toolkit (HTK) was used for recognition of Arabic handwritten text based on sliding window features like densities of foreground, concavity and arc length on databases of IFN/ENIT consisting of 26459 total words and achieved 85.43% average recognition rate by the proposed system in (Xiang et al., 2012).

We summarized the different OCR systems for different languages using HMM with accuracies and datasets in Table 1.

CONCLUSION

The literature review concludes that for the Naskh writing styles the HMM model and HMM Tool Kit (HTK) have performed very well in word/character recognition. But for the text line or word recognition in Nasta’liq writing style only few instances have been reported where in HMM and HMM Tool Kit (Htk) or variation of the tool kit have been explored. In future we need to investigate an optimal and sophisticated algorithm using HHM htk tool kit or it variations for Nasta’liq text line or word recognition.
REFERENCES

