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Abstract: The study analyzed the algebraic properties of the Euclidean algorithm in details. The analysis included a 
detailed step by step approach in understanding the algorithm, the extended form of the algorithm, 
computation of the Greatest Common Divisor (GCD) and its algebraic properties and their applications in algebra an
d cryptography. We also showed how the Euclidean algorithm could be applied to trading for the 
maximization of returns. In our approach, we assumed that gcd[a(x); b(x)] is the monic polynomial of minimal 
degree within the set G = {s(x)a(x)+t(x)b(x): s(x), t(x) ∈ F[x]} and thus, examining all equations of the form p(x) = 
s(x)a(x)+t(x)b(x). 
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INTRODUCTION 
 

The Euclidean Algorithm, the oldest algorithm that 
has survived the test of time is a very useful tool for 
calculating the greatest common divisor of two integers 
and for those matter two polynomials. This is attained 
through the use of the algorithm and its reciprocal 
subtraction (Glasby, 1999). 

Properties of the Euclidean algorithm include the 
division algorithm, the inverse property and backward 
substitution. 

These properties are applied in finding 
multiplicative inverses of integers and matrices in 
modulo arithmetic, least common multiple (events 
occurring together in different successive time 
intervals), trading, solving linear congruence in 
cryptography and modeling population growth 
(Honsberger, 1976). 

The algorithm is also applied in music, agriculture, 
modeling rabbit birth rate, design of games and number 
theory (Narkiewicz, 2000). 

In the 19th century, application of the algebraic 
properties of the Euclidean algorithm led to the 
development of new number systems such as Gaussian 
and Eisenstein integers (Bashmakova, 1948; Fowler, 
1999). 

In music, there is a correspondence between ratios 
and intervals as well as a correspondence between the 
mathematical relationships of different ratios and the 
musical relationships of different intervals. For 
example, combining two musical intervals together, 
gives you another. A fourth plus a fifth is an octave; a 
major third plus a minor third is a fifth. More 

complicated musical intervals like semitones are 
usually defined by looking at the difference between 
some pair of more simple intervals, just as the tone was 
defined as the difference between a fifth and the fourth. 
Euclid's algorithm provides a way of dealing with 
equations of musical pitch, potentially helping 
musicians and instrument makers to tune musical 
instruments (Gerard, 1973). 

The Euclidean algorithm is also used to design the 
Euclid’s game. Playing the Euclid’s game involves the 
use of the cognitive, psychomotor and effective 
domains thereby arousing and sustaining the interest of 
the individuals in mathematics. 

The Euclidean algorithm has also been improved to 
form the lame’s theorem which was used to develop the 
Fibonacci numbers (Knuth, 1997). 

The stem Brocot tree is also an application of the 
Euclidean algorithm which enables us to find fine 
features, carry out binary encoding, continuous fraction 
on the stem Brocot tree and fractions on a binary tree. 

The analysis of the Algebraic properties of the 
Euclidean algorithm has become necessary due to its 
usefulness. By analysis of the properties of the 
algorithm, we mean the determination of good bounds 
(especially upper) for the algorithm’s consumption of 
resources such as time and space. Such bounds are 
generally expressed in terms of the size of the inputs, or 
in the case of integer inputs in terms of the inputs 
themselves. The analysis of the algorithm has become 
an important field of study in computer science and 
algebra. As Knuth (1970) post it in 1970, the advent 
high-speed computing machines which are capable of 
carrying out so faithfully has led to intensive studies of 
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the properties of the algorithm, opening a fertile field 
for mathematical investigation. In this study, we present 
a detailed step by step approach in understanding the 
Euclidean algorithm, the extended form of the 
algorithm, computation of the Greatest Common 
Divisor (GCD) and its applications for the 
maximization of returns in trading. Further, we applied 
the division property to find the gcd, quotient and the 
remainder of algebraic expressions in a given modulo. 
 

MATERIALS AND METHODS 
 
Description of the Euclidean algorithm: Let F be a 
Field and a(x), b(x) be two polynomials such that a(x), 
b(x) ∈ F[x], then the Euclidean algorithm constructs 
gcd[a(x); b(x)] explicitly. The basic method is simple. If 
q(x) is any polynomial, then gcd[a(x), b(x)] = gcd[a(x)- 
q(x) b(x); b(x)].   

In particular, a(x) can be replaced in the calculation 
by its remainder r(x) upon division by b(x) Assuming 
that a(x) has degree as big as that of b(x), the remainder 
r(x) will have smaller degree than a(x); so the gcd of 
the original pair of polynomials will be equal to the gcd 
of a new pair with smaller total degree. We can 
continue by decreasing the degree of the remainder at 
each stage until the process stops with remainder 0 and 
at this point the gcd becomes clear. 

In our study we assume that gcd(a(x); b(x)) is the 
monic polynomial of minimal degree within the set: G 
= {s(x)a(x)+t(x)b(x): s(x), t(x) ∈ F[x]}. Thus, we 
examine all equations of the form p(x) = 
s(x)a(x)+t(x)b(x). 

Looking for one in which nonzero p(x) has 
minimal degree. The unique monic scalar multiple of 
this p(x) is then equal to gcd(a(x), b(x)). If we have two 
suitable equations: 

 
m(x) = e(x)a(x) + f(x) b(x)                                    (1) 
 
n(x) = g(x)a(x) + h(x) b(x)                                    (2) 
 
Then we can find a third with left hand side of 

smaller degree. Assume that the degree of m(x) is at 
least as big as that of n(x). By the Division Algorithm 
A.2, there are q(x) and r(x) with m(x) = q(x)n(x)+r(x) 
and deg(r(x)) <deg n(x)). Subtracting q(x) times Eq. (2) 
from Eq. (1) we have the desired: 

 
r(x) = m(x)-q(x)n(x) = (e(x) -q(x) g(x))  
a(x) + (f(x)-q(x)h(x)) b(x)                                     (3) 
 
Next, we divide r(x) into n(x) and, using Eq. (2) 

and (3), further reduces the degree of the left hand side. 
Continuing as before, we must ultimately arrive at an 
equation with 0 on the left. The left hand side of the 
previous equation will then have the desired minimal 
degree. The benefit of this method of calculation is that, 

the appropriate polynomials s(x) and t(x) are produced 
at the same time as the greatest common divisor (gcd). 

To succeed with this approach we must have two 
equations to begin with. 
These are provided by:  
 

a(x) = 1× a(x) + 0 × (bx)                                      (4) 
 
b(x) = 0× a(x) + 1 × b(x)                                      (5) 
 
  Assume that deg(a(x))≥deg (b(x)) with a(x) ≠ 0. 

At Step i we construct the equation: 
 

( ) ( ) ( ) ( ): xbxtxasxrE iiii +=  
 

Equation Ei is constructed from Ei-1 and Ei-2, the 
appropriate initialization being provided by (4) and (5): 

 
( ) ( ) ( )

( ) ( ) :1;0;
:0;1;

000

111

===
=== −−−

txsxbr
txsxaxr

 

 
Step i: Starting with ri-2(x) and ri-1(x), use the Division 
algorithm A.2 to define qi(x) and ri(x): Ri-2(x) = qi(x)ri-

1 (x)+ ri(x) with deg(ri(x)) <deg(ri-1(x)).  
Next define si(x) and ti(x) by: 

 
);()()()( 12 xsxqxsxs iiii −− −=  

( ) ( ) ( ) ( )xtxqxtxT iiii 12 −− −=  
 

We then have the equation: 
 

)()()()()(: xbxtxaxsxrE iiii +=  
 

Begin with i = 0. If we have ri(x) ≠ 0, then proceed 
to Step i+1. Eventually there will be an i with ri(x) = 0. 
At that point halt and declare gcd(a(x); b(x)) to be the 
unique monic scalar multiple of the nonzero polynomial 
ri-1(x). 

 
Proof: For each i, ( ) ( ) ( ) ( )xrxqxrxr iiii 12 −− −= ; so iE  
holds. This also shows that: 
 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )xbxaxrxr

xrxrxrxr iiii

,gcd,gcd
...,gcd,gcd

01

121

==
==

−

−−−

 
 
As long as i ≥ 0 and ri(x) = 0; deg(ri-1(x))< 

deg(ri(x)). Thus in at most deg(b(x)) steps ri(x) = 0 is 
reached. Then gcd(ri-1(x),0) = gcd(a(x),b(x)) is the 
unique monic multiple of ri-1(x), completing 
verification of the algorithm. Alternatively given a(x) 
and b(x)  being two non-zero polynomials such that 
deg(a(x))> deg(b(x)) we can use finite division to get 
the greatest common divisor (gcd). The process is as 
follows: 
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( ) ( ) ( ) ( ) ( )xrxrxgxbxa deg;+= < ( )xbdeg  
( ) ( ) ( ) ( ) ( )xrxrxgxrxb 111 deg;+= < ( )xrdeg  
( ) ( ) ( ) ( ) ( )xrxrxgxrxr 2221 deg;+= < ( )xr1deg  

 …  … … … … ….. ….. ….. ….. ….  
…. …. …. …. …. …. …. …. …. ….  

( ) ( ) ( ) ( )xrxgxrxr kkkqk += −− 1  ; ( )xrkdeg < ( )xrk 1deg −  

( ) ( ) ( )xgxrxr kkk 11 +− =  
 
Note that rk(x) differ from the required greatest 

common divisor (gcd) by only a constant factor in F. 
By reversing the above process we obtain 

polynomial: 
 

)()()()()(:)(),( xbxsxaxrxdxsxr +=  
 

Example: In computing the gcd (776, 544), we apply 
the Euclidean Algorithm as follows: 
First,  
 

5447762321544776 11 ==⇔+⋅= banda  
232544802232544 22 ==⇔+⋅= banda  
8023272280232 33 ==⇔+⋅= banda  

7280817280 44 ==⇔+⋅= banda  
87209872 55 ==⇔+⋅= banda  

 
So, 
 

( ) )..(8544,776gcd remainderzerononlasttheie −=  
 

RESULTS AND DISCUSSION 
 
Finding events that occur together: Events that occur 
at successive time interval can be solved using the 
ordinary Least Common Multiple (LCM). If these 
events occur at a larger time interval, the LCM 
computation becomes tedious. The Euclidean algorithm 
then becomes the best alternative. Thus, given two 
events occurring at very large time intervals a and b 
respectively, we will have: 
 

( )ba
baLCM
,gcd

×
=

 
 

This application is very useful when dealing with 
the production of the same commodities by different 
manufacturers. The fact is that, as the supply of the 
commodity increases, the demand reduces and prices go 
down. Manufacturers when aware of this occurrence 
will put the necessary measures in place to reduce 
losses. Again, this will help farmers avoid post-harvest 
losses.  
 
Example: If two factories a and b manufactures a 
mowing machine every 299 and 221 days respectively, 

The number of days it will take for them to manufacture 
at the same time is calculated as follows: 
First, for the gcd(299, 221).  We have: 
 

782211299 +⋅=  
65782221 +⋅=  

1365178 +⋅=  
013565 +⋅=  

∴ ( ) 13221,299gcd =  
 
Using,   
 

( ) 5083
13

66079
13

221299
,gcd

==
×

=
×

=
ba

baLCM  

 
This means that on the 5083 day, the two factories 

will manufacture a mowing machine each.  
 
Finding the remainder: The finite division algorithm 
is used in the remainder theorem to find the remainder 
of algebraic expressions in a given modulo. This 
application is useful when sharing things. In higher 
levels, we use it to share a thing in a given number of 
parts (referred to as modulo). 
 
Example: We can find the remainder if 𝑥𝑥5 + 2𝑥𝑥3 +
4𝑥𝑥2 + 𝑥𝑥 − 1 is divided by 𝑥𝑥3 − 4𝑥𝑥2 + 3𝑥𝑥 − 5 in 𝑍𝑍7(𝑋𝑋) 
as follows: 

14

43
534

13
6524
124

534
142534

2

2

23

23

234

234

2345

23523
++

→+−

+−+−

−−

+−+−

−++−

+−+−

−+++−+−
xx

remainderxx
xxx

xx
xxxx

xxxx
xxxx

xxxxxxx

 
 

NB: All workings are performed in 𝑍𝑍7(𝑋𝑋) 
appropriately. 
 
Theorem 1: Let G be a group, then for all 𝑎𝑎∈ 𝐺𝐺 there 
exist 𝑎𝑎−1∈ 𝐺𝐺 such that (𝑎𝑎−1)-1 = 𝑎𝑎. 
 
Proof: (𝑎𝑎−1)-1 𝑎𝑎−1 = 𝑒𝑒(𝑎𝑎) = 𝑎𝑎  Post multiplying by 𝑎𝑎, 
we obtain:     
                                              

[(𝑎𝑎 −1)-1 (𝑎𝑎−1)]𝑎𝑎  
= 𝑒𝑒(𝑎𝑎)𝑎𝑎… … … … … … … … … …                (6) 

 
From the L.H.S ≡ (𝑎𝑎−1)P

-1(𝑎𝑎−1𝑎𝑎) = (𝑎𝑎−1)-1 

𝑒𝑒(𝑎𝑎) = (𝑎𝑎−1)-1𝑒𝑒(𝑎𝑎−1) = (𝑎𝑎−1)-1𝑒𝑒[(𝑎𝑎−1)-1]  
= (𝑎𝑎−1 )-1                                                                                                (7) 

 
Hence from (1) and (2) (𝑎𝑎−1)P

-1   = 𝑎𝑎 
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Finding inverses by the extended Euclidean 
algorithm (multiplicative inverse): When we are 
working in modular arithmetic, we often need to find 
the inverse of a number relative to an operation. When 
we are looking for an additive inverse it is relative to an 
addition operation and when a multiplicative inverse it 
is relative to a multiplication operation. Here, we 
mainly used the extended Euclidean algorithm to find 
the multiplicative inverse of b in Zn when n and b are 
given and the inverses exists. To show this, take two 
integers 0<b<a and consider the Euclidean Algorithm 
equations which yield gcd(a, b) = rj. Rewrite all of 
these equations except the last one, by solving for the 
remainders: 
 

𝑟𝑟1 = 𝑎𝑎 − 𝑏𝑏𝑞𝑞1, 
𝑟𝑟2 = 𝑏𝑏 − 𝑟𝑟1𝑞𝑞2, 
𝑟𝑟3 = 𝑟𝑟1 − 𝑟𝑟2𝑞𝑞3, 
… … … … … .. 
𝑟𝑟𝑗𝑗−1 = 𝑟𝑟𝑗𝑗−3 − 𝑟𝑟𝑗𝑗−2𝑞𝑞𝑗𝑗−1, 
𝑟𝑟𝑗𝑗 = 𝑟𝑟𝑗𝑗−2 − 𝑟𝑟𝑗𝑗−1𝑞𝑞𝑗𝑗  

 
Then, in the last of these equations, 𝑟𝑟𝑗𝑗 = 𝑟𝑟𝑗𝑗−2 −

𝑟𝑟𝑗𝑗−1𝑞𝑞𝑗𝑗 , replace 𝑟𝑟𝑗𝑗−1 with its expression in terms of 
𝑟𝑟𝑗𝑗−3 and 𝑟𝑟𝑗𝑗−2  from  the  equation  immediately  above 
it. Continue this process successively, replacing 
 𝑟𝑟𝑗𝑗−2, 𝑟𝑟𝑗𝑗−3, … … .., until you obtain the final equation: 
 

𝑟𝑟𝑗𝑗 = 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑏𝑏 
 

With x and y integers. In special cases that gcd(a, 
b) = 1, the integer equation reads: 

 
1 = 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑏𝑏 

 
Therefore we deduce: 
 

aby mod1 ≡  
 

So that (the residue of) y is the multiplicative 
inverse of b mod a. 

Thus, the integer a ∈ Zn has a multiplicative 
inverse a-1 if and only if gcd(n, a) ≡ 1(mod n). 
 
Example: Find the multiplicative inverse .19 45Zinof /  
Solution: 
 

1)19,45gcd( =  

12.25
25.17

57.219
719.245

+=
+=
+=
+=

 

 
Extended: 

1919
45.819.19

19.1645.819.3
)19.245(819.3

7.819.3
7.27.619.3
7.2)7.219(3

7.25.3
5.27.25.1
)5.17(25.1

2.25.11

1 =∴

−=
+−=
−−=

−=
−−=
−−=

−=
+−=
−−=

−=

−

 

 
Solving systems of congruencies: The inverse property 
of the Euclidean algorithm can be applied in solving 
certain systems of congruencies in cryptography that 
involves the arrangement of things in a given number of 
ways (referred to as modulo) and thus, battle problems. 
 
Example: If a group of academic scholars in a 
conference can be fitted to 3 rows leaving 2 left, in 5 
rows leaving 4 left and 7 rows leaving 6 left then the 
total number of scholars who attended the conference 
can be found as follows. 

We translate it into the following system of 
congruencies:  
 

)7(mod6
)5(mod4
)3(mod2

≡
≡
≡

x
x
x

 
 
Next,  
 

105
753

321

=
××=

××= mmmm
 

 
Further: 
 

)7(mod115
7

105

)5(mod121
5

105

)3(mod235
3

105

33
3

2
2

1
1

≡====

≡===

≡===

m
m

m
mM

m
mM

m
mM

 
 
Next, we use Euclidean algorithm to compute: 
 

1
)7(mod15

)7(mod

1
)5(mod21

)5(mod

2
)3(mod35

)3(mod

,Im
)(mod

1

1
33

1

1
22

1

1
11

1

=
=

=

=
=

=

=
=

=

=

−

−

−

−

−

−

−

My

My

My

plies
mMy iii
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Finally, 
 

104
)105(mod314

9084140
115612142352

)(mod

333222111

3

1

=
=

++=
××+××+××=

++=⇒

=∑
=

yMayMayMax

myMax
i

iii

 
 
Therefore, there were 104 scholars at the conference 
 
Euclidean algorithm in trading: The Euclidean 
algorithm could also be applied to trading so as to 
maximize returns. In trading, retailers normally bid for 
reduction in prices of goods since they have to resell the 
commodities and make profit. They therefore price the 
goods in groups. Most often, some are added free to the 
retailers. In case there are more retailers, we can 
simplify their bid into linear congruence, applying the 
division and inverse property in determining the best 
bid so as to maximize profit. 
 
Example: A wholesaler sells cartons of biscuits. Three 
retailers agree to buy the cartons in groups. 

Retailer one agrees to buy them at every three for 
₵ 55.00 of which two will be left and added free to the 
retailer. Retailer two agrees to buy them at every seven 
for ₵ 125.00 of which four will be left and given him 
free. Retailer three agrees to buy it in tens for ₵ 175.00 
for which six will be left and added free. 

To estimate how many cartons are to be sold we 
use linear congruence with the application of Euclidean 
algorithm: 

 
ii maX mod≡  

( )3mod2≡X  
( )7mod4≡X  
( )10mod6≡X  

 
So, 
 

𝑚𝑚1 = 3,𝑚𝑚2 = 7,𝑚𝑚3 = 10,𝑎𝑎1 = 2,𝑎𝑎2 = 4,𝑎𝑎3 = 6 
 
We first compute: 
 

2101073321 =××=××= mmmM  
 
Next,  
 

70
3

210

1
1 ===

m
MM

 
30

7
210

2
2 ===

m
MM

 

21
10
210

3
3 ===

m
MM

 
 
Next, compute: 
 

( )iii mMy mod1−=  
( )1

1
11 mod mMy −=  
( )3mod70 1

1
−=y  

 
From the Euclidean algorithm, we have: 
 

132370 +⋅=  
0313 +⋅=  

( ) 13,70gcd =  
 
Further, from the extended Euclidean algorithm: 
 

3237011 ⋅−⋅=  
( ) 13mod70 1 =−

 
 
Hence, 𝑏𝑏1 = 1. 
Again, 
 

( )2
1

22 mod mMy −=  
( )7mod30 1

2
−=y  

 
Similarly: 
 

27430 +⋅=  
1237 +⋅=  

0212 +⋅=  
( ) 17,30gcd =  

 
Thus, 
 

23711 ⋅−⋅=  
( )7430171 ⋅−⋅−⋅=  

71230371 ⋅+⋅−⋅=  
303713 ⋅−⋅=  

( ) 4737mod30 1 =+−== −
 

 
Hence, 𝑏𝑏2 = 4 
Next, 
 

( )3
1

33 mod mMy −=  
( )10mod21 1

3
−=y  

 
Implies,  
 

110221 +⋅=  
010110 +⋅=  

( ) 110,21gcd =  
1022111 ⋅−⋅=  

( ) 110mod21 1 =−
 

𝑏𝑏3 = 1 
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By Chinese remainder theorem, we compute 
finally; 𝑥𝑥 = ∑ 𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑏𝑏𝑖𝑖𝑟𝑟

𝑖𝑖=1  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀): 
 

=[(𝑎𝑎1𝑀𝑀1𝑏𝑏1) + (𝑎𝑎2𝑀𝑀2𝑏𝑏2) + (𝑎𝑎3𝑀𝑀3𝑏𝑏3)]𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀 
( ) ( ) ( )[ ] 210mod121643041702 ××+××+××=  
[ ] 210mod126480140 ++=  

( )210mod746=  
116=  

 
Hence, there are 116 cartons. 

Again, if the wholesaler agrees to sell to retailer 
one, he can sell six times of such cartons in a month. If 
he agrees to sell for retailer two, he can sell ten times of 
such cartons in a month. If he also agrees to sell for 
retailer three, he can sell sixteen times of such cartons 
in a month. To find which of these retailers the 
wholesaler should choose to make the maximum profit 
in a month and assuming the cost price of a carton of 
the biscuit is ₵ 15.00 with selling price of ₵ 20.00 per 
carton, we look for the profit on each retailer. 
Thus, the total number of cartons is 116. 
For agreement with retailer one: 
 

Total sales = 116/3 = 38 with remainder of 2  
The selling price in a month is, 
38×6×55 = ₵ 12,540.00 
Cost price = 15×116×6 = ₵ 10, 440.00 

00.100,200.440,1000.540,12Pr =−=ofit  
 

Hence, the profit is ₵2,100.00. 
For agreement with retailer two: 
 

.416
7

116 ofremainderwithsalesTotal ==
 

 
The selling price in a month is: 
 

10×16×125 = ₵20, 000.00 
Cost price = 116×15×10 = ₵ 17, 400.00 

00.600,21740020000Pr =−=ofit  
 
Hence, the profit is ₵2, 600.00. 
For agreement with retailer three: 
 

Total sales 11
10

116
=  with remainder of 6 

 
The selling price in the month is: 
 

=×× 1751611  ₵30, 500.00 
The cost price = 1516116 ×× = ₵ 27, 840.00 
Profit = 2784030500 −  = ₵ 2, 960.00 
 
Hence the wholesaler should agree to do business 

with retailer three so as to maximize profit for that 
month. 

Backward substitution and the general difference 
equation formula: Backward substitution is also 
another important property of the Euclidean algorithm. 
This is seen when we try to make the greatest common 
divisor (gcd) the subject, carry out series of 
substitutions until the multiplicative inverse is obtained. 
This important property is useful in generating the 
general term of a number of mathematics formulae 
involving series. It can be applied also in statistics when 
finding the dual of an autoregressive process. Besides, 
it can be applied in difference equations to find 
composite formula when modeling population growth. 

In modeling population growth, this property is 
very useful. Let x0 be the initial population of an area, α 
be the growth rate of the population and xn be the 
general term then: 

 
𝑥𝑥1 = α𝑥𝑥0 
𝑥𝑥2 = α𝑥𝑥1 
………. 
..…...... 
𝑥𝑥𝑛𝑛 = α𝑥𝑥𝑛𝑛−1 
 

By backward substitution: 
 
Step 1: 𝑥𝑥𝑛𝑛 = α𝑥𝑥𝑛𝑛−1 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑛𝑛−1 = α𝑥𝑥𝑛𝑛−2 
Step 2: 𝑥𝑥𝑛𝑛 = α2𝑥𝑥𝑛𝑛−2 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛 𝑥𝑥𝑛𝑛−2 = α𝑥𝑥𝑛𝑛−3 
Step 3: 𝑥𝑥𝑛𝑛 = α3𝑥𝑥𝑛𝑛−3 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚 𝑥𝑥𝑛𝑛−3 = α𝑥𝑥𝑛𝑛−4 
Step 4: 𝑥𝑥𝑛𝑛 = α4𝑥𝑥𝑛𝑛−4 
……………… 
.…………….. 
Step n: 𝑥𝑥𝑛𝑛 = α𝑛𝑛𝑥𝑥𝑛𝑛−𝑛𝑛 = α𝑛𝑛𝑥𝑥0 
 

By obtaining the composite formula, we can find 
the population at any time t without wasting time to 
calculate the preceding populations.   
 
Example: Suppose the population of bats increases at a 
constant rate of 2% each year and the initial population 
of the bats is 100: 
 
• Deduce a formula to model the population of the 

bats in subsequent years. 
• What will be the population of the bats in 30 years’ 

time? 
 
Solution: 
 
• Let 𝑥𝑥0 = 100 and rate of increase α = 1.02 

 
𝑥𝑥1 = 1.02𝑥𝑥0 = 1.02(100) 
𝑥𝑥2 = 1.02𝑥𝑥1 = 1.02�1.02(100)� = (1.02)2(100) 

𝑥𝑥3 = 1.02𝑥𝑥2 = (1.02)(1.02)2(100) 
= (1.02)3(100) 

………………………………………………………………………………….. 
𝑥𝑥𝑛𝑛 = (1.02)𝑛𝑛𝑥𝑥0 = (1.02)𝑛𝑛100 
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• Let 𝑛𝑛 = 15 and 𝑥𝑥0 = 100 then 
 
𝑥𝑥15 = (1.02)15𝑥𝑥0 = (1.02)15100 
𝑥𝑥15 = (1.02)15100 = 135 𝑏𝑏𝑎𝑎𝑏𝑏𝑎𝑎 

 
CONCLUSION 

 
The study identified the inverse as an algebraic 

property of the Euclidean algorithm. This property has 
been applied in trading to maximize profit and used to 
find the inverse of numbers and matrices in a given 
modulo and further in cryptography to solve linear 
congruence problems. 

Further, we applied the division property to find 
the gcd, quotient and the remainder of algebraic 
expressions in a given modulo. It was also used to find 
when two events occurring at successive time interval 
will occur together so as to prepare for their 
occurrences. Finally, the study provided an easier way 
of proving the Euclidean algorithm. 
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