Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Mathematics and Statistics

    Abstract
2009(Vol.1, Issue:2)
Article Information:

Number of Solutions of the Equation φ (x) = 2a-1 in the Absence of Sixth Fermat Prime

Manjit Singh
Corresponding Author:  Manjit Singh 
Submitted: 2009 Month, 00
Accepted: 2009 Sep., 02
Published:
Abstract:
For any natural number k, J(k) is the set of solutions of the equation ф(x)=k. We find that the set of natural numbers is a disjoint union of J(k) and O(J(2a-1)) = a+1 if 1 ≤ a ≤ 32, 32 if a ≥ 33 in absence of sixth Fermat prime. Explicit expressions of J(231) and J(232) are also obtained.

Key words:  Euler’s ф -function, carmichael’s conjecture, fermat primes, , , ,
Abstract PDF HTML
Cite this Reference:
Manjit Singh, . Number of Solutions of the Equation φ (x) = 2a-1 in the Absence of Sixth Fermat Prime. Research Journal of Mathematics and Statistics, (2): Page No: 30-34.
ISSN (Online):  2040-7505
ISSN (Print):   2042-2024
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved