Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Advance Journal of Food Science and Technology


A Low Cost Medium Containing Chicken Intestine Autolysate for Lactobacillus brevis Growth: Statistical Optimization

1Kelthoum Ahmed-Gaid, 1Messaouda Boukhemis and 2Baida Djeghri-Hocine
1Laboratoire de Biochimie et de Microbiologie Appliquée, Département de Biochimie, Faculté des Sciences, Université de Badji Mokhtar BP12, Annaba, 23000,
2École Nationale Supérieure des Sciences de la Mer et de L’aménagement du Littoral, Alger, Algérie
Advance Journal of Food Science and Technology   2016  9:642-647
http://dx.doi.org/10.19026/ajfst.10.2209  |  © The Author(s) 2016
Received: April ‎9, ‎2015  |  Accepted: April ‎22, ‎2015  |  Published: March 25, 2016

Abstract

The valorization of chicken intestine to formulate a growth medium for lactic acid bacteria was tested on a strain of Lactobacillus brevis CHTD27. For this purpose, an autolytic degradation of the chicken intestine was carried out. The resulted Chicken Intestine Autolysate (CIA) was used as basic medium, while other medium parameters were studied using a Plackett and Burman design to determine the significant factors affecting the strain growth. Those were further optimized using a central composite design. As a result, CIA containing 19.15 g/L of glucose and 0.25 g/L of ammonium citrate supported good growth of L. brevis with a final optical density value of 6.00 at 600 nm, which is 32% higher than that on the standard medium MRS. Thus, medium containing CIA could constitute a low-cost alternative to MRS medium for the production of L. brevis biomass.

Keywords:

Autolysis, chicken intestine, growth medium, Lactobacillus brevis, statistical optimization,


References

  1. Aasen, I.M., T. Moretro, T. Katla, L. Axelsson and I. Storro, 2000. Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillssakei CCUG 42687. Appl. Microbiol. Biot., 53: 159-166.
    CrossRef    PMid:10709977    
  2. Aspmo, S.I., S.J. Horn and V.G.H. Eijsink, 2005. Use of hydrolysates from Atlantic cod (Gadusmorhua L.) viscera as a complex nitrogen source for lactic acid bacteria. FEMS Microbiol. Lett., 248: 65-68.
    CrossRef    PMid:15941626    
  3. Baoxin, Z., W. Xiangjing and X. Wensheng, 2011. Optimization of fermentation medium for enhanced production of milbemycin by a mutant of Streptomyces bingchenggensis BC-X-1 using response surface methodology. Afr. J. Biotechnol., 10(37): 7225-7235.
  4. Brinques, G.B., M.C. Peralba and M.A.Z. Ayub, 2010. Optimization of probiotic and lactic acid production by Lactobacillus plantarum in submerged bioreactor systems. J. Ind. Microbiol. Biot., 37: 205-212.
    CrossRef    PMid:19936814    
  5. Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith, 1956. Colorimetric method of determination of sugars and related substances. Anal. Chem., 26: 350-356.
    CrossRef    
  6. Edström, M., A. Nordberg and L. Thyselius, 2003. Anaerobic treatment of animal byproducts from slaughterhouses at laboratory and pilot scale. Appl. Biochem. Biotech., 109: 0273-2289.
  7. Escudero, A., A. Lacalle, F. Blanco, M. Pinto, I. Diaz and I. Dominguez, 2014. Semi-continuous anaerobic digestion of solid slaughterhouse waste. J. Environ. Chem. Eng., 2: 819-825.
    CrossRef    
  8. Folch, J., M. Lees and G.H.S. Sloane-Stanely, 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226: 497-509.
    PMid:13428781    Direct Link
  9. Franz, C.M.A.P., G.S. Cho, W.H. Holzapfel and A. Gálvez, 2010. Safety of Lactic Acid Bacteria. In: Mozzi, F., R.R. Raya and G.M. Vignolo (Eds.), Biotechnology of Lactic Acid Bacteria: Novel Applications. Wiley-Blackwell, Iowa, pp: 211-232.
    CrossRef    PMid:26781315    
  10. Gao, X., S.Y. Qiao and W.Q. Lu, 2009. Determination of an economical medium for growth of Lactobacillus fermentum using response surface methodology. Lett. Appl. Microbiol., 49: 556-561.
    CrossRef    PMid:19709366    
  11. Horn, S.J., S.I. Aspmo and V.G.H. Eijsink, 2005. Growth of Lactobacillus plantarum in media containing hydrolysates of fish viscera. J. Appl. Microbiol., 99: 1082-1089.
    CrossRef    PMid:16238738    
  12. Hujanen, M., S. Linko, Y.Y. Linko and M. Leisola, 2001. Optimisation of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-411. Appl. Microbiol. Biot., 56: 126-130.
    CrossRef    PMid:11499919    
  13. Jamdar, S.N. and P. Harikumar, 2005. Autolytic degradation of chicken intestinal proteins. Bioresource Technol., 96: 1276-1284.
    CrossRef    PMid:15734315    
  14. Jamdar, S.N. and P. Harikumar, 2008. A rapid autolytic method for the preparation of protein hydrolysate from poultry viscera. Bioresource Technol., 99: 6934-6940.
    CrossRef    PMid:18343658    
  15. LeBlanc, J.G., M.P. Taranto, V. Molina and F. Sesma, 2010. B-group Vitamins Production by Probiotic Lactic Acid Bacteria. In: Mozzi, F., R.R. Raya and G.M. Vignolo (Eds.), Biotechnology of Lactic Acid Bacteria: Novel Applications. Wiley-Blackwell, Iowa, pp: 341-359.
    CrossRef    
  16. Lowry, O.H., M.J. Rosenbrough, A.L. Farr and R.J. Randell, 1951. Protein measurement with folin phenol reagent. J. Biol. Chem., 193: 265-275.
  17. Plackett, R.L. and J.P. Burman, 1946. The design of optimum multifactorial experiments. Biometrika, 33: 305-325.
    CrossRef    Direct Link
  18. Roudj, S., K. Belkheir, H. ZadiKram and N. Karam, 2009. Protéolyse et autolyse chez deux lactobacilles isolés de lait camelin du Sud-Ouest Algérien. Eur. J. Sci. Res., 34: 218-227.
  19. Safari, R., A. Motamedzadegan, M. Ovissipour, J.M. Regenstein, A. Gildberg and B. Rasco, 2009. Use of hydrolysates from yellowfin Tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food Bioprocess Tech., DOI: 10.1007/s11947-009-0225-8.
    CrossRef    
  20. Vazquez, J.A., M.P. González and M.A. Murado, 2004. Peptones from autohydrolysed fish viscera for nisin and pediocin production. J. Biotechnol., 112: 299-311.
    CrossRef    PMid:15313007    
  21. Zhang, Y., I.S. Ng, C. Yao and Y. Lu, 2014. Orthogonal array deciphering MRS medium requirements for isolated Lactobacillus rhamnosus ZY with cell properties characterization. J. Biosci. Bioeng., 118(3): 298-304.
    CrossRef    PMid:24721122    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2042-4876
ISSN (Print):   2042-4868
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved