Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Advance Journal of Food Science and Technology


Review: Application of Non-destructive Techniques for Fruit Quality Classification

Yingqi Zhao, Sen Men, Jiaxin Liu, Jian Wu and Lei Yan
School of Technology, Beijing Forestry University, Beijing, 100083, China
Advance Journal of Food Science and Technology  2016  7:388-395
http://dx.doi.org/10.19026/ajfst.12.2981  |  © The Author(s) 2016
Received: October ‎31, ‎2015  |  Accepted: January ‎16, ‎2016  |  Published: November 05, 2016

Abstract

A review is given of different non-destructive techniques for fruit quality classification. As a hot research topic in the field of International Agricultural and Food Engineering, fruit quality classification has great influence on meeting consumers’ requirements for food quality and safety. Recently, a range of non-destructive techniques has been used for evaluating fruit quality. The main non-destructive techniques for fruit classification include using electrical properties, acoustic properties, optical properties, sonic vibration properties of fruits or THz, NMR, x-rays, electronic nose, machine vision technology, near-infrared spectroscopy and hyperspectral imaging to evaluate fruits without destruction. This review focus on summing up different types of non-destructive fruit classification techniques, including their pros and cons. Hyperspectral imaging techniques which were developed in recent years has been involved.

Keywords:

Fruit classification, hyperspectral, non-destructive techniques,


References

  1. Barreiro, P., C. Ortiz, M. Ruiz-Altisent, J. Ruiz-Cabello, M.E. Fernández-Valle, I. Recasens and M. Asensio, 2000. Mealiness assessment in apples and peaches using MRI techniques. Magn. Reson. Imaging, 18: 1175-1181.
    CrossRef    Direct Link
  2. Benady, M., J.E. Simon, D.J. Charles and G.E. Miles, 1995. Fruit ripeness determination by electronic sensing of aromatic volatiles. T. ASAE, 38(1): 251-257.
    CrossRef    
  3. Bowers, S.V., R.B. Dodd and Y.J. Han, 1988. Nondestructive Testing to Determine Internal Quality of Fruit. American Society of Agricultural Engineers, ASAE Techn. Paper No. 88-6569, St. Joseph, Michigan.
    PMCid:PMC282404    
  4. Chaughule, R.S., P.C. Mali, R.S. Patil, G.D. Joshi and Y.M. Lo, 2002. Magnetic resonance spectroscopy study of sapota fruits at various growth stages. Innov. Food Sci. Emerg., 3(2): 185-190.
  5. Chen, P., 1993. Nondestructive Methods for Internal Quality Evaluation of Agricultural Products. Commission of the European Communities, pp: 15-25.
  6. Chen, P. and Z. Sun, 1991. A review of non-destructive methods for quality evaluation and sorting of agricultural products. J. Agr. Eng. Res., 49: 85-98.
    CrossRef    Direct Link
  7. Chen, P., M.J. McCarthy, S.M. Kim and B. Zion, 1996. Development of a high-speed NMR technique for sensing maturity of avocados. T. ASAE, 39(6): 2205-2209.
  8. Chen, Z.Y., 2007. Nondestructive test on electric properties of tomato and relationship research between electric and physiology features. Zhejiang University, China.
  9. Clark, C.J. and J.S. MacFall, 1996. Magnetic resonance imaging of persimmon fruit (Diospyros kaki) during storage at low temperature and under modified atmosphere. Postharvest Biol. Tec., 9((1): 97-108.
  10. Clark, C.J. and J.S. MacFall, 2003. Quantitative magnetic resonance imaging of 'Fuyu' persimmon fruit during development and ripening. Magn. Reson. Imaging, 21(6): 679-685.
    CrossRef    Direct Link
  11. Clark, C.J. and S.K. Forbes, 1994. Nuclear magnetic resonance imaging of the development of chilling injury in 'Fuyu' persimmon (Diospyros kaki). New Zeal. J. Crop Hort., 22(2): 209-215.
  12. Diaz, R., L. Gil, C. Serrano, M. Blasco, E. Moltó and J. Blasco, 2004. Comparison of three algorithms in the classification of table olives by means of computer vision. J. Food Eng., 61(1): 101-107. http://www.sciencedirect.com/science/article/pii/S0260877403001912.
    CrossRef    Direct Link
  13. Dull, G.G., G.S. Birth, D.A. Smittle and R.G. Leffler, 1989a. Near infrared analysis of soluble solids in intact cantaloupe. J. Food Sci., 54(2): 393-395.
    CrossRef    Direct Link
  14. Dull, G.G., G.S. Birth and R.G. Leffier, 1989b. Exiting energy distribution in honeydew melon irradiated with a near infrared beam. J. Food Quality, 12(5): 377-381.
    CrossRef    Direct Link
  15. Fan, Z., W. Qian, M. Zhi-Hong, X. Yong and H. Hong-Ju, 2007. Content determination of sugar and fiber in watermelon by near-infrared spectroscopy. Food Sci., 28(1): 258-261. http://www.spkx.net.cn/EN/abstract/abstract14772.shtml.
    Direct Link
  16. Gonzalez, J.J., R.C. Valle and S. Bobroff, 2001. Detection and monitoring of internal browning development in 'Fuji' apples using NMR. Postharvest Biol. Tec., 22: 179-183.
    CrossRef    
  17. Greensill, C.V. and K.B. Walsh, 2000. A remote acceptance probe and illumination configuration for spectral assessment of internal attributes of intact fruit. Meas. Sci. Technol., 11(12): 1674-1684. http://www.ingentaconnect.com/content/iop/mst/2000/00000011/00000012/art00304.
    CrossRef    Direct Link
  18. Greensill, C.V., P.J. Wolfs, C.H. Spiegelman and K.B. Walsh, 2001. Calibration transfer between PDA-based NIR spectrometers in the NIR assessment of melon soluble solids content. Appl. Spectrosc., 55(5): 647-653.
    CrossRef    Direct Link
  19. Guthrie, J., B. Wedding and K. Walsh, 1998. Robustness of NIR calibrations for soluble solids in intact melon and pineapple. J. Near Infrared Spec., 6: 259-265.
    CrossRef    Direct Link
  20. Hu, X.N., Y.F. Peng, X.N. Luo and H.P. Luo, 2014. Application and progress of near infrared spectroscopy technique for measurement on fruit qualities. Agr. Eng., 4(5): 53-58. (In Chinese)
  21. Ito, H., S. Mofimoto and R. Yamauchi, 2001. Potential of near infrared spectroscopy for non-destructive estimation of soluble solids in growing melons. Proceeding of ISHS Acta Horticulturae 566: II International Symposium on Application of Modelling as an Innovative Technology in the Agri-Food Chain.
  22. Ito, S., Y. Ootake, Y. Yoshimura and I. Kito, 1993. Nondestructive determination of sugar content in watermelon by near infrared spectroscopy. Res. Bull. Aichiken Agric. Res. Center, 31: 153-158.
  23. Jie, D.F., 2014. Research on non-destructive on-line detection system for internal quality of Qilin watermelon. Ph.D. Thesis, Zhejiang University, pp: 186-190.
  24. Kato, K., 1987. Nondestructive measurement of fruits quality by electrical impedance (Part 1) - Relation between impedance parameters and freshness. Research Report on Agricultural Machinery, Kyoto University, 17: 51-68.
  25. Kerr, W.L., C.J. Clark, M.J. McCarthy and J.S. de Ropp, 1997. Freezing effects in fruit tissue of kiwifruit observed by magnetic resonance imaging. Scientia Hortic-Amsterdam, 69(3-4): 169-179. http://www.sciencedirect.com/science/article/pii/S030442389700006X.
    CrossRef    Direct Link
  26. Kim, S.M., P. Chen, M.J. McCarthy and B. Zion, 1999. Fruit internal quality evaluation using on-line nuclear magnetic resonance sensors. J. Agric. Eng. Res., 74(3): 293-301. http://www.sciencedirect.com/science/article/pii/S0021863499904651.
    CrossRef    Direct Link
  27. Lammertyn, J., T. Dresselaers and P.V. Hecke 2003. Analysis of the time course of core breakdown in conference pears by means of NMR and X-ray CT. Postharvest Biol. Tec., 29: 19-28.
    CrossRef    
  28. Li, S., Y.L. Tan and M.Y. Yang, 2008. Study on fruit classification and surface defect detection. Comput. Eng. Design, 29(15): 2954-3957.
  29. Liu, S.W., C. Liu, X.D. Chang and T.K. Wang, 2014. The effects of cultivar type on the quality characteristics of Chinese chestnuts (Castanea mollissima) canned in sugar syrup. Adv. J. Food Sci. Technol., 6(4): 506-511.
  30. Lu, W., H. Yuan and G.T. Xu, 2000. Modern NIR Spectral Analysis Techniques. China Petrochemical Press, Beijing, China.
  31. Maruo, T., T. Ito, A. Terashima, K. Maeda and S. Shimamura, 2002. Nondestructive evaluation of ripeness and soluble solids content in melon and watermelon fruits using laser. Proceeding of the ISHS Acta Horticulturae 588: II International Symposium on Cucurbits.
  32. Miller, B.K. and M.J. Delwiche, 1989. A color vision system for peach grading. T. ASAE, 32(4): 1484-1490.
    CrossRef    
  33. Nagata, M. and J.G. Tallada, 2005. American Society of Agricultural Engineers Annual International Meeting. Tampa, Florida, 29(6): 7-9.
  34. Natale, C.D., A. Macagnano, E. Martinelli, E. Proietti R. Paolesse et al., 2001. Electronic nose based investigation of the sensorial properties of peaches and nectarines. Sensor. Actuat. B-Chem.., 77(1-2): 561-566.
  35. Nelson, S.O., 1980. Microwave dielectric properties of fresh fruits and vegetables. T. ASAE, 23(5): 314-317.
  36. Nicolaï, B.M., K. Beullens, E. Bobelyn, A. Peirs, W. Saeys et al., 2007. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Tec., 46(2): 99-118.
  37. Noh, H.K., Y.K. Peng and R.F. Lu, 2006. American society of agricultural and biological engineer's annual international meeting. Portland, Oregon, pp: 66-182.
  38. Oranusi, U.S. and B. Wesley, 2012. Microbiological safety assessment of apple fruits (malus domestica borkh) sold in Owerri Imo state Nigeria. Adv. J. Food Sci. Technol., 4(2): 97-102.
  39. Osborn, G.S., R.E. Lacey and J.A. Singleton, 2001. A method to detect peanut off-flavors using an electronic nose. T. ASAE, 44(4): 929-938.
  40. Pang, L. and Y.X. Wang, 2006. Application of NMR in fruit quality detection. Agric. Mech. Res., 8: 176-181.
  41. Paulsen, M.R. and W.F. McClure, 1986. Illumination for computer vision systems. T. ASAE, 29(5): 1398-1404.
  42. Polder, G., G.W.A.M. van der Heijden and I.T. Young, 2003. Tomato sorting using independent component analysis on spectral images. Real-Time Imaging, 9(4): 253-259. http://www.sciencedirect.com/science/article/pii/S107720140300069X.
    CrossRef    Direct Link
  43. Richardson, J.M. and K. Mash, 1988. A fusion of multisensor data. Int. J. Robot. Res., 7(6): 78-96.
    CrossRef    
  44. Saevels, S., J. Lammertyn, A.Z. Berna, E.A. Veraverbeke, C.D. Natale et al., 2003. Electronic nose as a non-destructive tool to evaluate the optimal harvest date of apple. Postharvest Biol. Tec., 30(1): 3-14.
    CrossRef    
  45. Sarig, Y. and D. Beaumelle, 1993. Preliminary experiments with an electronic sensor for measuring aromatic volatiles in fruit. Agric. Eng., 29(1).
  46. Simon, J.E., A. Hetzroni, B. Bordelon, G.E. Miles and D.J. Charles, 1996. Electronic sensing of aromatic volatiles for quality sorting of blueberries. J. Food Sci., 61(5): 967-970.
    CrossRef    
  47. Singh, N. and M.J. Delwiche, 1994. Machine vision methods for defect sorting stonefruit. T. ASAE, 37(6): 1989-1997.
  48. Sivakumar, S.S., Q. Jun and W. Ning, 2006. American society of agricultural and biological engineer's annual international meeting. Portland, Oregon, pp: 9-12.
  49. Sonego, L., R. Ben-Arie, J. Raynal and J.C. Pech, 1995. Biochemical and physical evaluation of textural characteristics of nectarines exhibiting woolly breakdown: NMR imaging, x-ray computed tomography and pectin composition. Postharv. Biol. Tec., 5(3): 187-198.
  50. Sun, C.Z. and G.C. Jiang, 2010. Research on apple impedance monitoring system under low frequency current-source. J. Hefei Univ., Technol., 33(2): 231-234.
  51. Sun, Z.C., 2007. Research of Apple Impediment Monitoring System under Low Frequency Current-Source.
  52. Tang, H.Z., 2011. Research progress on fruit quality evaluation system of electronic nose. Packag. Food Mach., 29(1): 51-62.
  53. Tao, X.M. and Y. Bao, 2006. Measurement of sugar content of watermelon using near-infrared reflectance spectroscopy in comparison with dielectric property. Proceeding of the SPIE 6047, 4th International Conference on Photonics and Imaging in Biology and Medicine, pp: 1-7.
  54. Tao, Y., 1996. Spherical transform of fruit images for on-line defect extraction of mass objects. Opt. Eng., 35(2): 344-350.
    CrossRef    
  55. Thompson, D.R. and G.L. Zechariah, 1971. Dielectric theory and bioelectrical measurements [J]. T. ASAE, 14(2): 211-215.
  56. Throop, J.A., G.E. Rehkugler and B.L. Upchurch, 1989. Application of computer vision for detecting watercore in apples. T. ASAE, 32(6): 2087-2092.
  57. Tsuta, M., J. Sugiyama and Y. Sagara, 2002. Near-infrared imaging spectroscopy based on sugar absorption band for melons. J. Agr. Food Chem., 50(1): 48-52. http://www.ncbi.nlm.nih.gov/pubmed/11754540.
    CrossRef    PMid:11754540    Direct Link
  58. Walsh, K.B., J.A. Guthrie and J.W. Burney, 2000. Application of commercially available, low-cost, miniaturised NIR spectrometers to the assessment of the sugar content of intact fruit. Aust. J. Plant Physiol., 27(12): 1175-1186.
    Direct Link
  59. Wang, S., 2011. Study on defecting defect of appearance for Northwestern melon. Lanzhou University, China.
  60. Yang, L. and B. Li, 2015. A hybrid fresh apple export volume forecasting model based on time series and artificial neural network. Adv. J. Food Sci. Technol., 7(12): 966-970.
  61. Ying, Y. and H.Y. Yu, 2007. Application of near infrared spectroscopy in food quality. Proceeding of the Chinese Society of Agricultural Engineering 2007 Annual Conference. Chinese Society of Agricultural Engineering, Daqing.
  62. Ying, Y. and Y. Liu, 2003. Study and application of optical properties for nondestructive interior quality inspection of fruit. J. Zhejiang Univ., Agric. Life Sci., 29(2):125-129.
  63. Ying, Y.B., X.Q. Rao and J.F. Ma, 2004. Methodology for nondestructive inspection of citrus maturity with machine vision. T. Chinese Soc. Agric. Eng., 20(2): 144-147.
  64. Zhang, L. and F. Xu, 1996. Study on correlation between dielectric properties and freshness of apple. T. CSAE, 12(3).
  65. Zhao, W.J. and X.B. Zou, Y.F. Pan and S.P. Liu, 2004. Research on method of apples odorant recognition based on GA-neural network. J. Jiangsu Univ., Nat. Sci. Edn., 25(1): 1-4.
  66. Zhu, H.T., S. Shengli and C. Guilin, 2006. Artificial olfactory system and its applications in the clinic diagnosis field. Sensor World, pp: 6-9.
    PMCid:PMC1892175    
  67. Zion, B., P. Chen and M.J. McCarthy, 1995. Detection of bruises in magnetic resonance images of apples. Comput. Electron. Agr., 13(4): 289-299.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2042-4876
ISSN (Print):   2042-4868
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved