Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Identification of Vinegar Flavor using Electronic Nose

Hong-Biao Zhou
Faculty of Automation, Huaiyin Institute of Technology, Huai
Research Journal of Applied Sciences, Engineering and Technology  2017  4:154-160
http://dx.doi.org/10.19026/ajfst.13.4442  |  © The Author(s) 2017
Received: July ‎12, ‎2016  |  Accepted: April 27, 2017  |  Published: April 25, 2017

Abstract

As one of the most popular condiments, vinegar’s quality has been widely concerned. Discrimination of vinegar which is composed of a complex mixture of very similar compositions by chemical analysis means is a remaining challenge. In order to explore possibility of identification of vinegar’s quality by electrochemical methods, we have developed an electronic nose with gas sensor array of different selectivity composed of eight sensors (TGS813, TGS822, TGS826, TGS2600, TGS2602, TGS2610, TGS2611 and TGS2620). The experiment process is automatically measured by a virtual testing application platform with LabVIEW, which can realize data acquisition, data storage, data processing and so on. The odor’s fingerprint of five different flavor vinegar, including white vinegar, mature vinegar, rice vinegar, balsamic vinegar and apple vinegar, are collected using the electronic nose. Multivariate statistical analyses, such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), are employed to analyze all of these samples. Meanwhile, the multilayer perceptron (MLP) recognition model is established. The results show that both PCA and LDA can distinguish different flavor samples and the MLP has achieved higher recognition accuracy. It’s a feasible way to discriminate different flavor vinegar with the self-developed electronic nose.

Keywords:

Electronic nose, linear discriminant analysis, multilayer perceptron, principal component analysis, vinegar,


References

  1. Abbasi, H., S.M. Seyedain Ardabili, M.A. Mohammadifar and Z. Emam-Djomeh, 2015. Comparison of trial and error and genetic algorithm in neural network development for estimating farinograph properties of wheat-flour dough. Nutr. Food Sci. Res., 2(3): 29-38.
    Direct Link
  2. Baldwin, E.A., J. Bai, A. Plotto and S. Dea, 2011. Electronic noses and tongues: Applications for the food and pharmaceutical industries. Sensors, 11(5): 4744-4766.
    CrossRef    PMid:22163873 PMCid:PMC3231405    Direct Link
  3. Bao, G. and Z. Zeng, 2012. Analysis and design of associative memories based on recurrent neural network with discontinuous activation functions. Neurocomputing, 77(1): 101-107.
    CrossRef    Direct Link
  4. Brudzewski, K., S. Osowski and T. Markiewicz, 2004. Classification of milk by means of an electronic nose and SVM neural network. Sens. Actuat. B-Chem., 98(2-3): 291-298.
    Direct Link
  5. Desrochers, R., P. Keane, S. Ellis and K. Dowell, 2002. Expanding the sensitivity of conventional analytical techniques in quality control using sensory technology. Food Qual. Pref., 13(6): 397-407.
    CrossRef    Direct Link
  6. Falasconi, M., I. Concina, E. Gobbi, V. Sberveglieri, A. Pulvirenti and G. Sberveglieri, 2012. Electronic nose for microbiological quality control of food products. Int. J. Electrochem., 2012: 12.
    CrossRef    Direct Link
  7. Guan, B., J. Zhao, H. Lin and X. Zou, 2014. Characterization of volatile organic compounds of vinegars with novel electronic nose system combined with multivariate analysis. Food Anal. Method., 7(5): 1073-1082.
    CrossRef    Direct Link
  8. Han, M., J. Fan and J. Wang, 2011. A dynamic feedforward neural network based on Gaussian particle swarm optimization and its application for predictive control. IEEE T. Neural Networ., 22(9): 1457-1468.
    CrossRef    PMid:21803682    Direct Link
  9. Hartyáni, P., I. Dalmadi and D. Knorr, 2013. Electronic nose investigation of Alicyclobacillus acidoterrestris inoculated apple and orange juice treated by high hydrostatic pressure. Food Control, 32(1): 262-269.
    CrossRef    Direct Link
  10. Hong, X., J. Wang and G. Qi, 2015. E-nose combined with chemometrics to trace tomato-juice quality. J. Food Eng., 149: 38-43.
    CrossRef    Direct Link
  11. Jiang, H., H. Zhang, Q. Chen, C. Mei and G. Liu, 2015. Recent advances in electronic nose techniques for monitoring of fermentation process. World J. Microb. Biot., 31(12): 1845-1852.
    CrossRef    PMid:26338367    Direct Link
  12. Jo, D., G.R. Kim, S.H. Yeo, Y.J. Jeong, B.S. Noh and J.H. Kwon, 2013. Analysis of aroma compounds of commercial cider vinegars with different acidities using SPME/GC-MS, electronic nose, and sensory evaluation. Food Sci. Biotechnol., 22(6): 1559-1565.
    CrossRef    Direct Link
  13. Li, S., X.R. Li, G.L. Wang, L.X. Nie, Y.J. Yang, H.Z. Wu, F. Wei, J. Zhang, J.G. Tian and R.C. Lin, 2012. Rapid discrimination of Chinese red ginseng and Korean ginseng using an electronic nose coupled with chemometrics. J. Pharmaceut. Biomed., 70: 605-608.
    CrossRef    PMid:22742921    Direct Link
  14. Li, S., P. Li, F. Feng and L.X. Luo, 2015. Microbial diversity and their roles in the vinegar fermentation process. Appl. Microbiol. Biot., 99(12): 4997-5024.
    CrossRef    PMid:25971198    Direct Link
  15. Montuschi, P., N. Mores, A. Trové, C. Mondino and P.J. Barnes, 2012. The electronic nose in respiratory medicine. Respiration, 85(1): 72-84.
    CrossRef    PMid:23018197    Direct Link
  16. Oliveros, M.C.C., J.L.P. Pavón, C.G. Pinto, M.E.F. Laespada, B.M. Cordero and M. Forina, 2002. Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils. Anal. Chim. Acta, 459(2): 219-228.
    CrossRef    Direct Link
  17. Peris, M. and L. Escuder-Gilabert, 2009. A 21st century technique for food control: Electronic noses. Anal. Chim. Acta, 638(1): 1-15.
    CrossRef    PMid:19298873    Direct Link
  18. Scott, S.M., D. James and Z. Ali, 2007. Data analysis for electronic nose systems. Microchim. Acta, 156(3-4): 183-207.
    CrossRef    Direct Link
  19. Trirongjitmoah, S., Z. Juengmunkong, K. Srikulnath and P. Somboon, 2015. Classification of garlic cultivars using an electronic nose. Comput. Electron. Agr., 113: 148-153.
    CrossRef    Direct Link
  20. Ubeda, C., R.M. Callejón, C. Hidalgo, M.J. Torija, A. Mas, A.M. Troncoso and M.L. Morales, 2011. Determination of major volatile compounds during the production of fruit vinegars by static headspace gas chromatography–mass spectrometry method. Food Res. Int., 44(1): 259-268.
    CrossRef    Direct Link
  21. Wilson, A.D., 2012. Review of electronic-nose technologies and algorithms to detect hazardous chemicals in the environment. Proc. Technol., 1: 453-463.
    CrossRef    Direct Link
  22. Yan, J., X. Guo, S. Duan, P. Jia, L. Wang, C. Peng and S. Zhang, 2015. Electronic nose feature extraction methods: A review. Sensors, 15(11): 27804-27831.
    CrossRef    PMid:26540056 PMCid:PMC4701255    Direct Link
  23. Zeng, J., X. Cao, Y. Liu, J. Chen and K. Ren, 2015. A single cataluminescence sensor based on spectral array and its use in the identification of vinegars. Anal. Chim. Acta, 864: 64-73.
    CrossRef    PMid:25732428    Direct Link
  24. Zhang, Q., S. Zhang, C. Xie, C. Fan and Z. Bai, 2008. 'Sensory analysis' of Chinese vinegars using an electronic nose. Sensor. Actuat. B-Chem., 128(2): 586-593.
    Direct Link
  25. Zhang, Y., S. Wang, G. Ji and P. Phillips, 2014. Fruit classification using computer vision and feedforward neural network. J. Food Eng., 143: 167-177.
    CrossRef    Direct Link

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2042-4876
ISSN (Print):   2042-4868
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved