Research Article | OPEN ACCESS
Modeling Soil Salt and Nitrogen Transport under Different Fertigation Practices with Hydrus-1D
Zeng Wen-zhi, Huang Jie-sheng, Wu Jing-wei and Xu Chi
State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
Advance Journal of Food Science and Technology 2013 5:592-599
Received: December 26, 2012 | Accepted: January 25, 2013 | Published: May 05, 2013
Abstract
In this study the effects of different fertigation practices on salt and nitrogen dynamics were analyzed in the Hetao District, China by using the Hydrus-1D model. The results indicated that the soil electrical conductivity increased gradually with depth after irrigation and the electrical conductivity of 0~60 cm depth changed faster than that of 60~100 cm depth. However, the soil ammonium nitrogen concentration decreased with depth and high irrigation intensity could promote the increase of ammonium nitrogen while reducing the differences of their distributions in soil profile. In addition, when the initial urea application was in a small amount (10 g), the nitrate nitrogen concentration increased with soil depth while decreased with irrigation intensity after irrigation. Furthermore, both ammonium and nitrate nitrogen content of soil profile rose with increasing initial urea application amount, which played a more important role in the changes of soil ammonium (0~100 cm) and nitrate (0~80 cm) nitrogen content than irrigation intensity.
Keywords:
Irrigation, leaching, salinity, simulation, transport,
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2042-4876
ISSN (Print): 2042-4868 |
|
Information |
|
|
|
Sales & Services |
|
|
|