Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Advance Journal of Food Science and Technology


Optimization of Hydrolysis Conditions for the Production of Iron-Binding Peptides from Mackerel Processing Byproducts

Pan-Feng Wang, Guang-Rong Huang and Jia-Xin Jiang
College of Life Sciences, China Jiliang University, P.R. China
Advance Journal of Food Science and Technology  2013  7:921-925
http://dx.doi.org/10.19026/ajfst.5.3183  |  © The Author(s) 2013
Received: March 26, 2013  |  Accepted: April 15, 2013  |  Published: July 05, 2013

Abstract

The aim of this study was focused on optimization of enzymatic hydrolysis conditions for the production of iron-binding peptides from marine mackerel processing byproducts. The marine mackerel processing byproducts protein were hydrolyzed using trypsin, Protamex, Flavourzyme, Alcalase and Neutrase. Alcalase and Protamex proteolytic hydrolysates exhibited the highest iron-binding capacity; however, Alcalase proteolytic hydrolysate had higher degree of hydrolysis than that of Protamex. A four-factor-three-level composition central design experiment in response surface methodology was used to optimize the enzymatic hydrolysis conditions of Alcalase. The optimal enzymatic hydrolysis conditions were temperature of 46.0°C, time of 2.01 h, pH 8.35 and enzyme to substrate 6460 U/mL. The quadratic model predicted well about the actual measured value. The average iron-binding capacity of three verification experiment was 6.62 mg-EDTA/g-protein, which was much closed to model predicted value of 6.69 mg-EDTA/g-protein.

Keywords:

Alcalase, hydrolysis, iron binding peptides, mackerel processing byproducts, response surface methodology,


References


Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2042-4876
ISSN (Print):   2042-4868
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved