Research Article | OPEN ACCESS
Research on Dispersed Oil Droplets Breakage and Emulsification in the Dynamic Oil and Water Hydrocyclone
Guangdong Guo and Songsheng Deng
Department of Petroleum Supply Engineering, Logistic Engineering University, Chongqing 401311, P.R. China
Advance Journal of Food Science and Technology 2013 8:1110-1116
Received: April 23, 2013 | Accepted: May 03, 2013 | Published: August 05, 2013
Abstract
Oil and water dynamic hydrocyclone is one type of facilities that separate two phases or multiple phases applied widely in the fields such as food processing, environmental protection, biological pharmacy, petroleum and chemistry. The dispersed oil droplets in the dynamic oil and water hydrocyclone were often broken into small drops by shear force, which decreased the separation efficiency of dynamic oil-water hydrocyclone greatly. To avoid the breakage of the oil droplets, the turbulence field and the velocity field of the dynamic hydrocyclone were studied by the software of Fluent to analyze the main reason that led to breakage of oil droplets. Results indicated that the deformation of oil droplets was caused by the viscous shear force; the breakage of oil droplets was caused by the Reynolds shear stress and the local pressure fluctuations. The main area that the drops were prone to breakup of the dynamic hydrocyclone is that the rotating grating nearby, the wall boundary layer of the drum and center axis of the drum. Finally, the breakage of oil droplets and emulsification of oil and water in the dynamic hydrocyclone were verified by the experiments.
Keywords:
Droplets breakage, dynamic hydrocyclone, oil and water separation, reynolds shear stress, turbulence intensity,
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2042-4876
ISSN (Print): 2042-4868 |
|
Information |
|
|
|
Sales & Services |
|
|
|