Research Article | OPEN ACCESS
Optimized Preparation of Catechin Nanoliposomes by Orthogonal Design and Stability Study
1Xiaobo Luo, 1Rongfa Guan, 2Xiaoqiang Chen, 1Mingqi Liu, 3Yunbin Hao and 1Han Jiang
1Zhejiang Provincial Engineering Laboratory of Quality Controlling Technology and Instrumentation for Marine Food, China Jiliang University, Hang-Zhou, 310018, China
2School of Food and Pharmaceutical Engineering, Hubei University of Technology,
Wuhan, 430068, China
3Zhoushan Fishery Testing Center, Zhoushan 316111, China
Advance Journal of Food Science and Technology 2014 7:921-925
Received: April ‎26, ‎2014 | Accepted: May ‎25, ‎2014 | Published: July 10, 2014
Abstract
Catechin nanoliposomes are prepared by reverse-phase evaporation method. Taking the entrapment efficiency of catechin nanoliposomes as the main evaluation index, the prescription of the catechin nanoliposomes was optimized by orthogonal design. Found by experiment, the orthogonal design test showed that phosphatidylcholine to cholesterol ratio had the highest influence in preparation and rotary evaporation temperature the lowest, with catechin concentration and ion strength in between. The best conditions of preparation of catechin nanoliposomes are that phosphatidylcholine to cholesterol ratio of 4, catechin concentration of 4.00 mg/mL, ion strength of 0.02 mol/Landrotary evaporationtemperature of 40°C, encapsulation efficiency can reach about 53.69±1.65%, the particle size is 235±4 nm. Finally, using pH, leakage ratio and size to explore the stability, catechin nanoliposomes showed an acceptable stability
Keywords:
Catechin, entrapment efficiency, nanoliposomes, orthogonal design, particle size, stability,
References
-
Ashida, H., T. Furuyashiki, H. Nagayasu, H. Bessho, H. Sakakibara, T. Hashimoto and K. Kanazawa, 2004. Anti-obesity actions of green tea: Possible involvements in modulation of the glucose uptake system and suppression of the adipogenesis-related transcription factors. Biofactors, 22: 135-140.
CrossRef PMid:15630268 -
Bangham, A.D., M.M. Standish and J.C. Watkins, 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 13: 238-252.
CrossRef
- Barenholz, Y., 2001. Liposome application: Problems and prospects. Curr. Opin. Colloid In., 6: 66-77.
CrossRef
-
Basto, C., T. Tzanov and A. Cavaco-Paulo, 2007. Combined ultrasound-laccase assisted bleaching of cotton. Ultrason. Sonochem., 14: 350-354.
CrossRef PMid:16987689
-
Cai, Y., N.D. Anavy and H.S. Chow, 2002. Contribution of presystemic hepatic extraction to the low oral bioavailability of green tea catechins in rats. Drug Metab. Dispos., 30: 1246-1249.
CrossRef PMid:12386131
-
Chan, P.T., W.P. Fong, Y.L. Cheung, Y. Huang, W.K.K. Ho and Z.Y. Chen, 1999. Jasmine green tea epicatechins are hypolipidemic in hamsters (Mesocricetus auratus) fed a high fat diet. J. Nutr., 129: 1094-1101.
CrossRef PMid:10356071
-
Ding, B.M., X.M. Zhang, K. Hayat, S.Q. Xia, C.S. Jia, M.Y. Xie and C.M. Liu, 2011. Preparation, characterization and the stability of ferrous glycinate nanoliposomes. J. Food Eng., 102: 202-208.
CrossRef
-
Dong, J.J., J.H. Ye, J.L. Lu, X.Q. Zheng and Y.R. Liang, 2011. Isolation of antioxidant catechins from green tea and its decaffeination. Food Bioprod. Process., 89: 62-66.
CrossRef
- Dvorakova, K., R.T. Dorr, S. Valcic, B. Timmermann and D.S. Alberts, 1999. Pharmacokinetics of the green tea derivative, EGCG, by the topical route of administration in mouse and human skin. Cancer Chemoth. Pharm., 43: 331-335.
CrossRef PMid:10071985
-
Fan, M.H., S.Y. Xu, S.Q. Xia and X.M. Zhang, 2008. Preparation of salidroside nano-liposomes by ethanol injection method and in vitro release study. Eur. Food Res. Technol., 227: 167-174.
CrossRef
-
Fang, J.J., R.F. Guan, C. Ri, M.Q. Liu, X.Q. Ye and J.X. Jiang, 2013. Optimization of fabrication parameters to prepare tea catechin-loaded liposomes using response surface methodology. Adv. J. Food Sci. Technol., 5: 29-35.
CrossRef
-
Flaten, G.E., K. Luthman, T. Vasskog and M. Brandl, 2008. Drug permeability across a phospholipid vesicle-based barrier: 4. The effect of tensides, co-solvents and pH changes on barrier integrity and on drug permeability. Eur. J. Pharm. Sci., 34: 173-180.
CrossRef PMid:18499410
- Guan, R.F., J.Q. Ma, Y.H. Wu, F. Lu, C.G. Xiao, H. Jiang and T.S. Kang, 2012. Development and characterization of lactoferrin nanoliposome: Cellular uptake and stability. Nanoscale Res. Lett., 7: 1-6.
CrossRef PMid:23244160 PMCid:PMC3604955
-
Gunasekera, U.A., Q.A. Pankhurst and M. Douek, 2009. Imaging applications of nanotechnology in cancer. Target. Oncol., 4: 169-181.
CrossRef PMid:19876702
- Hincha, D.K., 2003. Effects of calcium-induced aggregation on the physical stability of liposomes containing plant glycolipids. BBA-Biomembranes, 1611: 180-186.
CrossRef
- Ikeda, I., 2008. Multifunctional effects of green tea catechins on prevention of the metabolic syndrome. Asia Pac. J. Clin. Nutr., 17: 273-274.
PMid:18296354
- Lu, Q., P.M. Lu, J.H. Piao, X.L. Xu, J. Chen, L. Zhu and J.G. Jiang, 2014. Preparation and physicochemical characteristics of an allicin nanoliposome and its release behavior. LWT-Food Sci. Technol., 57: 686-695.
- Ma, Q.H., Y.Z. Kuang, X.Z. Hao and N. Gu, 2009. Preparation and characterization of tea polyphenols and vitamin E loaded nanoscale complex liposome. J. Nanosci. Nanotechno., 9: 1379-1383.
CrossRef PMid:19441529
- Ma, J.Q., R.F. Guan, C. Ri, M.Q. Liu, X.Q. Ye and J.X. Jiang, 2012. Response surface methodology for the optimization of lactoferrin nano-liposomes. Adv. J. Food Sci. Technol., 4: 249-256.
-
Mastersizer, 2000. User manual. Malvern Instruments Ltd. 2007.
- Morita, O., J.B. Kirkpatrick, Y. Tamaki, C.P. Chengelis, M.J. Beck and R.H. Bruner, 2009. Safety assessment of heat-sterilized green tea catechin preparation: A 6-month repeat-dose study in rats. Food Chem. Toxicol., 47: 1760-1770.
CrossRef PMid:19406200
-
Osaki, N., U. Harada, H. Watanabe, K. Onizawa, T. Yamaguchi, I. Tokimitsu, H. Shimasaki and H. Itakura, 2001. Effect of tea catechins on energy metabolism in rats. J. Oleo Sci., 50: 677-682.
CrossRef
- Song, J., F. Shi, Z.H. Zhang, F.X. Zhu, J. Xue, X.B. Tan, L.Y. Zhang and X.B. Jia, 2011. Formulation and evaluation of celastrol-loaded liposomes. Molecules, 16: 7880-7892.
CrossRef PMid:22143548
- Szoka, F. and D. Papahadjopoulos, 1978. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. USA, 75: 4194-4198.
CrossRef PMid:279908 PMCid:PMC336078
- Yamaguchi, T., M. Nomura, T. Matsuoka and S. Koda, 2009. Effects of frequency and power of ultrasound on the size reduction of liposome. Chem. Phys. Lipids, 160: 58-62.
CrossRef PMid:19397902
- Yilmaz, Y. and R.T. Toledo, 2004. Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin and gallic acid. J. Agr. Food Chem., 52: 255-260.
CrossRef PMid:14733505
- Zhang, J., S.F. Nie and S. Wang, 2013. Nanoencapsulation enhances epigallocatechin-3-gallate stability and its antiatherogenic bioactivities in macrophages. J. Agr. Food Chem., 61: 9200-9209.
CrossRef PMid:24020822 PMCid:PMC3840090
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2042-4876
ISSN (Print): 2042-4868 |
|
Information |
|
|
|
Sales & Services |
|
|
|