Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Advance Journal of Food Science and Technology


Effects of Sodium Tripolyphosphate, Microbial Transglutaminase and Enzyme-hydrolyzed Soy Protein Fraction on the Quality of Cooked Pork Batter by Response Surface Methodology

1, 2Xingjian Huang, 1, 3Tian Yi, 4, 5Fang Yang, 3Can Xu, 3Gan Li, 1, 3Wanfeng Hu, 2Dingren Bi and 1, 3Siyi Pan
1MOE Key Laboratory of Environment Correlative Dietology
2College of Animal Science and Technology
3College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
4Department of Animal Sciences, Food Science Section, University of Kentucky, Lexington, Kentucky 40546, United States
5Department of Biological Engineering, Zhixing College of Hubei University, Wuhan, Hubei 430011, P.R. China
Advance Journal of Food Science and Technology  2014  11:1228-1240
http://dx.doi.org/10.19026/ajfst.6.189  |  © The Author(s) 2014
Received: ‎June ‎20, ‎2014  |  Accepted: July ‎19, ‎2014  |  Published: November 10, 2014

Abstract

We investigated the compound effects of sodium tripolyphosphate (STPP), microbial transglutaminase (MTGase) and enzyme-hydrolyzed soy protein fraction (denoted as TSF, molecular weight cut-off = 0.5 kDa to 10 kDa) on the texture properties (hardness, springiness, cohesiveness and chewiness), cooking yield and sensory attributes (firmness, elasticity and juiciness) of cooked pork batter. The hardness and springiness of the cooked pork batter were both significantly affected by the amount of MTGase and TSF added. In the presence of TSF, the textural characteristics of cooked pork batter were not significantly affected by STPP (p>0.05). The amount of TSF elicited negative linear (p<0.001) and positive quadratic effects (p<0.01) on the cohesiveness and chewiness of cooked pork batter. The interaction between MTGase and TSF positively affected (p<0.01) the cohesiveness of cooked pork batter. Furthermore, the amount of MTGase showed positive linear (p<0.01) effects on the chewiness of cooked pork batter. However, the interaction between STPP and TSF significantly weakened (p<0.05) the chewiness of cooked pork batter. Both TSF and MTGase positively affected (p<0.01 and p<0.05, respectively) cooking yield. Both hardness versus firmness and springiness versus elasticity presented distinct correlations (p<0.01 and p<0.001, respectively). The cohesiveness and chewiness of cooked pork batter significantly affected cooking yield and sensory attributes (firmness, elasticity and juiciness). Overall acceptability poorly correlated with instrumental attributes and sensory partial attribute. Sensory analysis results indicated that the cooked pork batter with 0.4% MTGase, 4% TSF and 0.4% STPP was the most common sample, which presented the best synthetic mouth feeling.

Keywords:

Microbial transglutaminase, pork batter, soy protein , sensory, texture, ultrafiltration,


References

  1. AOAC, 2011. Official Methods of Analysis of AOAC International. 18th Edn., AOAC International, Arlington, VA, USA.
  2. Barbut, S. and G.S. Mittal, 1990. Effect of heating rate on meat batter stability, texture and gelation. J. Food Sci., 55: 334-337.
    CrossRef    
  3. Carrascal, J.R. and J. Regenstein, 2002. Emulsion stability and water uptake ability of chicken breast muscle proteins as affected by microbial transglutaminase. J. Food Sci., 67(2): 734-739.
    CrossRef    
  4. Chanyongvorakul, Y., Y. Matsumura, M. Nonaka, M. Motoki and T. Mori, 1995. Physical properties of soy bean and broad bean 11S globulin gels formed by transglutaminase reaction. J. Food Sci., 60: 483-488,493.
    CrossRef    
  5. Chéret, R., N. Chapleau, C. Delbarre-Ladrat, V. Verrez-Bagnis and M. Lamballerie, 2005. Effects of high pressure on texture and microstructure of sea bass (Dicentrarchus labrax L.) fillets. J. Food Sci., 70(8): e477-e483.
    CrossRef    
  6. Cho, J.H., S. Sato, J.C. Horng, B. Anil and D.P. Raleigh, 2008. Electrostatic interactions in the denatured state ensemble: Their effect upon protein folding and protein stability. Arch. Biochem. Biophys., 469: 20-28.
    CrossRef    PMid:17900519 PMCid:PMC2820407    
  7. Cho, J.H., S. Sato and D.P. Raleigh, 2004. Thermodynamics and kinetics of non-native interactions in protein folding: A single point mutant significantly stabilizes the N-terminal domain of L9 by modulating non-native interactions in the denatured state. J. Mol. Biol., 338: 827-837.
    CrossRef    PMid:15099748    
  8. Cofrades, S., J. Ayo, A. Serrano, J. Carballo and F. Jiménez-Colmenero, 2006. Walnut, microbial transglutaminase and chilling storage time effects on salt-free beef batter characteristics. Eur. Food Res. Technol., 222: 458-466.
    CrossRef    
  9. Colmenero, F.J.N., M.J. Ayo and J. Carballo, 2005. Physicochemical properties of low sodium frankfurter with added walnut: Effect of transglutaminase combined with caseinate, KCl and dietary fibre as salt replacers. Meat Sci., 69: 781-788.
    CrossRef    PMid:22063157    
  10. Dijkstra, J.K., S.D.G. Scott, S. Lindenberg, R. Veenstra and A.H.N. Cillessen, 2012. Testing three explanations of the emergence of weapon carrying in peer context: The roles of aggression, victimization and the social network. J. Adolescent Health, 50(4): 371-376.
    CrossRef    PMid:22443841    
  11. Dobraszczyk, B.J. and J.F.V. Vincent, 1999. Measurement and Perception: Mechanical Testing of Food. In: Dobraszczyk, B.J. and J.F.V. Vincent (Eds.), Food Texture. Aspen Publishers, Inc., Gaithersburg, MD.
  12. Everard, C.D., D.J. O'Callaghan, T.V. Howard, C.P. O'Donnell, E.M. Sheehan and C.M. Delahunty, 2006. Relationships between sensory and rheological measurements of texture in maturing commercial cheddar cheese over a range of moisture and pH at the point of manufacture. J. Texture Stud., 37: 361-382.
    CrossRef    
  13. Farouk, M.M., K. Wieliczko, R.L. Ima, S. Turnwald and G.A. MacDonald, 2002. Cooked sausage batter cohesiveness as affected by sarcoplasmic proteins. Meat Sci., 61: 85-90.
    CrossRef    
  14. Feng, J. and Y.L. Xiong, 2003. Interaction and functionality of mixed myofibrillar and enzyme-hydrolyzed soy proteins. J. Food Sci., 68(3): 803-809.
    CrossRef    Direct Link
  15. Feng, J. and Y.L. Xiong, 2002. Interaction of myofibrillar and preheated soy proteins. J. Food Sci., 67: 2851-2856.
    CrossRef    
  16. Fernández-Martín, F., S. Cofrades, J. Carballo and F. Jiménez-Colmenero, 2002. Salt and phosphate effects on the gelling process of pressure/heat treated pork batters. Meat Sci., 61(1): 15-23.
    CrossRef    
  17. Gambaro, A., P. Varela and A. Gimenez, 2002. Textural quality of white pan bread by sensory and instrumental measurements. J. Texture Stud., 33: 401-413.
    CrossRef    
  18. Giuseppe, R.C., C. Rossana, M. Francesco, M. Davide and G. Marco, 2012. Micronized by-products from debranned durum wheat and sourdough fermentation enhanced the nutritional, textural and sensory features of bread. Food Res. Int., 46(1): 304-313.
    CrossRef    Direct Link
  19. Gordon, A. and S. Barbut, 1992. Effect of chloride salts on protein extraction and interfacial protein film formation in meat batters. J. Sci. Food Agr., 58: 227-238.
    CrossRef    
  20. Guillén, M.C.G., A.J. Borderías and P. Montero, 1997. Chemical interactions of nonmuscle proteins in the network of sardine (sardina pilchardus) muscle gels. LWT-Food Sci. Technol., 30(6): 602-608.
  21. Hamm, R., 1986. Functional Properties of the Myofibrillar System and their Measurements. In: Bechtel, P.J. (Ed.), Muscle as Food. Academic Press Inc., San Diego, CA, pp: 135-199.
    CrossRef    
  22. Hough, G., A.N. Califano and N.C. Bertola, 1996. Partial least squares correlations between sensory and instrumental measures of flavor and texture for reggianito grating cheese. Food Qual. Prefer., 7: 47-53.
    CrossRef    
  23. Huang, X.J., C. Li, F. Yang, L.X. Xie, X.Y. Xu, Y. Zhou and S.Y. Pan, 2010. Interactions and gel strength of mixed myofibrillar with soy protein, 7S globulin and enzyme-hydrolyzed soy proteins. Eur. Food Res. Technol., 231(5): 751-762.
    CrossRef    
  24. Huidobro, F.R.D., E. Miguel, B. Blázquez and E. Onega, 2005. A comparison between two methods (Warner-Bratzler and texture profile analysis) for testing either raw meat or cooked meat. Meat Sci., 69: 527-536.
    CrossRef    PMid:22062992    
  25. ISO-8586-2012, 2012. Sensory Analysis: General Guidance for the Selection, Training and Monitoring of Assessors. In: Selected Assessors: International Organization for Standardization.
  26. Jeremiah, L.E., A.P. Sather and E.J. Squires, 1999. Gender and diet influences on pork palatability and consumer acceptance. I. Flavor and texture profiles and consumer acceptance. J. Muscle Foods, 10(4): 305-316.
    CrossRef    
  27. Kim, E.H.J., V.K. Corrigan, D.I. Hedderley, L. Motol, A.J. Wilson and M.P. Morgenstern, 2009. Predicting the sensory texture of cereal snack bars using instrumental measurements. J. Texture Stud., 40: 457-481.
    CrossRef    
  28. Kuraishi, C., J. Sakamoto, K. Yamakazi, Y. Susa, C. Kuhara and T. Soeda, 1997. Production of restructured meat using microbial transglutaminase without salt or cooking. J. Food Sci., 62: 488-490.
    CrossRef    
  29. Kuraishi, C., J. Sakamoto and T. Soeda, 1998. Application of transglutaminase for meat processing. Fleischwirtschaft, 78: 657-658, 660, 702.
  30. Lanier, T.C., 1991. Interactions of muscle and non-muscle protein affecting heat set gel rheology. In: Parris, N. and R. Barford (Eds.), Interactions of Food Proteins. ASC Series, Washington, DC, pp: 454.
    CrossRef    
  31. Lassoued, N., J. Delarue, B. Launay and C. Michon, 2008. Baked product texture: correlations between instrumental and sensory characterization using flash profile. J. Cereal Sci., 48: 133-143.
    CrossRef    
  32. Lee, C.M. and A.V.A. Resurreccion, 2002. Improved correlation between sensory and instrumental measurement of peanut butter texture. J. Food Sci., 67(5): 1939-1949.
    CrossRef    
  33. Lee, S.Y., I. Luna-Guzmán, S. Chang, D.M. Barrett and J.X. Guinard, 1999. Relating descriptive analysis and instrumental texture data of processed diced tomatoes. Food Qual. Perfer., 10(6): 447-455.
    CrossRef    
  34. Melendres, M.V., J.P. Camou, N.G.T. Olivera, E.Á. Almora, D.G. Mendoza, L.A. Reyes and H.G. Ríos, 2014. Response surface methodology for predicting quality characteristics of beef patties added with flaxseed and tomato paste. Meat Sci., 97(1): 54-61.
    CrossRef    PMid:24509360    
  35. Motoki, M. and K. Seguro, 1998. Transglutaminase and its use for food processing. Trends Food Sci. Tech., 9: 204-210.
    CrossRef    
  36. Nagarajan, G. and K. Natarajan, 1999. The use of box-behnken design of experiments to study in vitro salt tolerance by pisolithus tinctorius. World J. Microb. Biot., 15: 197-203.
    CrossRef    
  37. Nightingale, L.M.A., S. Yeunlee and N.J. Engeseth, 2009. Textural changes in chocolate characterized by instrumental and sensory techiques. J. Texture Stud., 40: 427-444.
    CrossRef    
  38. Pereira, P.B., R.J. Bennett and M.S. Luckman, 2005. Instrumental and sensory evaluation of textural attributes in cheese analogs: A correlation study. J. Sens. Stud., 20: 434-453.
    CrossRef    
  39. Pereiraa, R.B., H. Singh, P.A. Munro and M.S. Luckman, 2003. Sensory and instrumental textural characteristics of acid milk gels. Int. Dairy J., 13: 655-667.
    CrossRef    
  40. Pietrasik, Z. and E.C.Y. Li-Chan, 2002. Response surface methodology study on the effects of salt, microbial transglutaminase and heating temperature on pork batter gel properties. Food Res. Int., 35: 387-396.
    CrossRef    
  41. Pietrasika, Z., A. Jarmoluka and P.J. Shand, 2007. Effect of non-meat proteins on hydration and textural properties of pork meat gels enhanced with microbial transglutaminase. LWT-Food Sci. Technol., 40: 915-920.
    CrossRef    
  42. Ruiz de Huidobro, F., V. Ca-eque, S. Lauzurica, S. Velasco, C. Pñrez and E. Onega, 2001. Sensory characterization of meat texture in sucking lambs. Methodology. Invest. Agr. Prod. Sanid. Anim., 16(2): 223-234.
  43. SAS (Statistical Analysis System), 2004. Statistical Analysis System User's Guide, Version 9.1.3. SAS Institute Inc., Raleigh, North Carolina, USA.
  44. Sobhi, B., M. Noranizan, S.A. Karim and Z. Ghazali, 2012. Microbial and quality attributes of thermally processed chili shrimp paste. Int. Food Res. J., 19(4): 1705-1712.
  45. Sofos, N.J., 1986. Use of phosphates in low-sodium meat products. Food Technol., 40: 53-63.
  46. Somboonpanyakula, P., S. Barbutb, P. Jantawata and N. Chinprahasta, 2007. Textural and sensory quality of poultry meat batter containing malva nut gum, salt and phosphate. LWT-Food Sci. Technol., 40: 498-505.
  47. Tárrega, A. and E. Costell, 2007. Colour and consistency of semi-solid dairy desserts: Instrumental and sensory measurements. J. Food Eng., 78: 655-661.
    CrossRef    
  48. Tseng, T.F., D.C. Liu and M.T. Chen, 2000a. Evaluation of transglutaminase on the quality of low-salt chicken meat-balls. Meat Sci., 55: 427-431.
    CrossRef    
  49. Veland, J.O. and O.J. Torrissen, 1999. The texture of Atlantic salmon (Salmo salar) muscle as measured instrumentally using TPA and Warner-Bratzler shear test. J. Sci. Food Agr., 79: 1737-1746.
    CrossRef    
  50. Xiong, Y.L., 2005. Role of myofibrillar proteins in water-binding in brine-enhanced meats. Food Res. Int., 38: 281-287.
    CrossRef    
  51. Xiong, Y.L., K.K. Agyare and K. Addo, 2008. Hydrolyzed wheat gluten suppresses transglutaminase-mediated gelation but improves emulsification of pork myofibrillar protein. Meat Sci., 80: 535-544.
    CrossRef    PMid:22063363    
  52. Yuan, S. and S.K.C. Chang, 2007. Texture profile of tofu as affected by instron parameters and sample preparation and correlations of instron hardness and springiness with sensory scores. J. Food Sci., 72(2): 136-145.
    CrossRef    PMid:17995855    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2042-4876
ISSN (Print):   2042-4868
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved