Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Advance Journal of Food Science and Technology


The Sensor Construct of Colorimetric Sensor Array for Rapid Evaluation of Fish Freshness

1, 2Haiyang Gu, 1Yanhui Sun, 3Huang Dai, 2Fangkai Han and 2Xingyi Huang
1School of Bio and Food Engineering, Chuzhou University, Chuzhou, 239000, China
2School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
3College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
Advance Journal of Food Science and Technology  2015  8:631-637
http://dx.doi.org/10.19026/ajfst.7.1620  |  © The Author(s) 2015
Received: October ‎29, ‎2014  |  Accepted: December ‎18, ‎2014  |  Published: March 15, 2015

Abstract

A Colorimetric Sensor Array (CSA) system was developed for the evaluation of fish freshness using metalloporphyrin as sensor. SPME-GC/MS experiments were carried out to provided the VOCs component information for the theoretical investigation. Density Functional Theory (DFT) method at B3LYP/LANL2DZ level was performed to investigate the binding property between metalloporphyrin and VOCs to construct a proper CSA sensor for the evaluation of fish freshness. Finally, pattern recognition method was to evaluate the effect of metalloporphyrin on the detection of fish freshness. Result shows that the classification accuracy are 78.3, 78.3 and 81.7%, respectively for the data without MnP data, ZnP data and CoP data, respectively, 85.0 and 83.3% for the data without CuP data and FeP data. The evaluation result is good in agreement with the theoretical study. This research suggests that theoretical study is useful for the design of CSA sensor and the constructing CSA sensor will be helpful for quality evaluation of fish freshness.

Keywords:

Colorimetric sensor array, density functional theory, fish freshness, SPME-GC/MS,


References

  1. Ampuero, S. and J. Bosset, 2003. The electronic nose applied to dairy products: A review. Sensors Actuators B: Chem., 94(1): 1-12.
    CrossRef    
  2. Badii, F. and N.K. Howell, 2002. Changes in the texture and structure of cod and haddock fillets during frozen storage. Food Hydrocoll., 16(4): 313-319.
    CrossRef    
  3. Berna, A.Z., J. Lammertyn, S. Saevels, C.D. Natale and B.M. Nicolaï, 2004. Electronic nose systems to study shelf life and cultivar effect on tomato aroma profile. Sensors Actuators B: Chem., 97(2): 324-333.
    CrossRef    
  4. Buryak, A. and K. Severin, 2005. A chemosensor array for the colorimetric identification of 20 natural amino acids. J. Amer. Chem. Soc., 127(11): 3700-3701.
    CrossRef    PMid:15771496    
  5. De Visser, S.P., 2006. Substitution of hydrogen by deuterium changes the regioselectivity of ethylbenzene hydroxylation by an oxo-iron-porphyrin catalyst. Chem. A Eur. J., 12(31): 8168-8177.
    CrossRef    PMid:16871510    
  6. Epstein, J.R. and D.R. Walt, 2003. Fluorescence-based fibre optic arrays: A universal platform for sensing. Chem. Soc. Rev., 32(4): 203-214.
    CrossRef    PMid:12875026    
  7. Esbensen, K., D. Kirsanov, A. Legin, A. Rudnitskaya, J. Mortensen, J. Pedersen, L. Vognsen, S. Makarychev-Mikhailov and Y. Vlasov, 2004. Fermentation monitoring using multisensor systems: Feasibility study of the electronic tongue. Anal. Bioanal. Chem., 378(2): 391-395.
    CrossRef    PMid:14647952    
  8. Goh, Y.M. and W. Nam, 1999. Significant electronic effect of porphyrin ligand on the reactivities of high-valent iron (IV) oxo porphyrin cation radical complexes. Inorganic Chem., 38(5): 914-920.
    CrossRef    PMid:11670863    
  9. Gokbulut, I. and I. Karabulut, 2012. SPME-GC-MS detection of volatile compounds in apricot varieties. Food Chem., 132(2): 1098-1102.
    CrossRef    
  10. Gram, L. and H.H. Huss, 1996. Microbiological spoilage of fish and fish products. Int. J. Food Microbiol., 33(1): 121-137.
    CrossRef    
  11. Huang, X., J. Xin and J. Zhao, 2011. A novel technique for rapid evaluation of fish freshness using colorimetric sensor array. J. Food Eng., 105(4): 632-637.
    CrossRef    Direct Link
  12. Huo, D.Q., G.P. Zhang, C.J. Hou, J.L. Dong, Y.C. Zhang, Z. Liu, X.G. Luo, H.B. Fa and S.Y. Zhang, 2010. A colorimetric sensor array for identification of natural amino acids. Chinese J. Anal. Chem., 38(8): 1115-1120.
    CrossRef    
  13. Janzen, M.C., J.B. Ponder, D.P. Bailey, C.K. Ingison and K.S. Suslick, 2006. Colorimetric sensor arrays for volatile organic compounds. Anal. Chem., 78(11): 3591-3600.
    CrossRef    PMid:16737212    
  14. Jensen, K.P. and U. Ryde, 2004. How O2 binds to heme reasons for rapid binding and spin inversion. J. Biol. Chem., 279(15): 14561-14569.
    CrossRef    PMid:14752099    
  15. Jensen, K.P. and U. Ryde, 2005. How the Co-C bond is cleaved in coenzyme B12 enzymes: A theoretical study. J. Amer. Chem. Soc., 127(25): 9117-9128.
    CrossRef    PMid:15969590    
  16. Li, S., B.D. Bruin, C.H. Peng, M. Fryd and B.B. Wayland, 2008. Exchange of organic radicals with organo-cobalt complexes formed in the living radical polymerization of vinyl acetate. J. Amer. Chem. Soc., 130(40): 13373-13381.
    CrossRef    PMid:18781751    
  17. Orellana, W., 2013. Catalytic properties of transition metal-N4 moieties in graphene for the oxygen reduction reaction: Evidence of spin-dependent mechanisms. J. Phys. Chem. C, 117(19): 9812-9818.
    CrossRef    
  18. Sun, Y., K. Chen, L. Jia and H. Li, 2011. Toward understanding macrocycle specificity of iron on the dioxygen-binding ability: A theoretical study. Phys. Chem. Chem. Phys., 13(30): 13800-13808.
    CrossRef    PMid:21720635    
  19. Sun, Y., X. Hu, H. Li and A.F. Jalbout, 2009. Metalloporphyrin-dioxygen interactions and the effects of neutral axial ligands. J. Phys. Chem. C, 113(32): 14316-14323.
    CrossRef    
  20. Suslick, K.S., D.P. Bailey, C.K. Ingison, M. Janzen, M.E. Kosal, W.B. Mcnamara Iii, N.A. Rakow, A. Sen, J.J. Weaver and J.B. Wilson, 2007. Seeing smells: Development of an optoelectronic nose. Quimica Nova, 30(3): 677-681.
    CrossRef    
  21. Vlasov, Y., A. Legin and A. Rudnitskaya, 2002. Electronic tongues and their analytical application. Anal. Bioanal. Chem., 373(3): 136-146.
    CrossRef    PMid:12043015    
  22. Wang, J. and P. Sporns, 1999. Analysis of anthocyanins in red wine and fruit juice using MALDI-MS. J. Agri. Food Chem., 47(5): 2009-2015.
    CrossRef    PMid:10552487    
  23. Winquist, F., S. Holmin, C. Krantz-R P. Wide and I. Lundstr, 2000. A hybrid electronic tongue. Anal. Chimica Acta, 406(2): 147-157.
    CrossRef    
  24. Winquist, F., R. Bjorklund, C. Krantz-R Lcker, M.I. Lundstr, K. Östergren and T. Skoglund, 2005. An electronic tongue in the dairy industry. Sensors Actuators B: Chem., 111: 299-304.
    CrossRef    
  25. Zhang, C. and K.S. Suslick, 2007. Colorimetric sensor array for soft drink analysis. J. Agri. Food Chem., 55(2): 237-242.
    CrossRef    PMid:17227048    
  26. Zhang, C., D.P. Bailey and K.S. Suslick, 2006. Colorimetric sensor arrays for the analysis of beers: A feasibility study. J. Agri. Food Chem., 54(14): 4925-4931.
    CrossRef    PMid:16819897    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2042-4876
ISSN (Print):   2042-4868
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved