Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Advance Journal of Food Science and Technology


The Combination Forecasting Model of Grain Production Based on Stepwise Regression Method and RBF Neural Network

Lihua Yang and Baolin Li
School of Economics and Management, Hubei University of Automotive Technology, Shiyan, 442002, China
Advance Journal of Food Science and Technology  2015  11:891-895
http://dx.doi.org/10.19026/ajfst.7.2528  |  © The Author(s) 2015
Received: November ‎21, ‎2014  |  Accepted: January ‎8, ‎2015  |  Published: April 10, 2015

Abstract

In order to improve the accuracy of grain production forecasting, this study proposed a new combination forecasting model, the model combined stepwise regression method with RBF neural network by assigning proper weights using inverse variance method. By comparing different criteria, the result indicates that the combination forecasting model is superior to other models. The performance of the models is measured using three types of error measurement, which are Mean Absolute Percentage Error (MAPE), Theil Inequality Coefficient (Theil IC) and Root Mean Squared Error (RMSE). The model with smallest value of MAPE, Theil IC and RMSE stands out to be the best model in predicting the grain production. Based on the MAPE, Theil IC and RMSE evaluation criteria, the combination model can reduce the forecasting error and has high prediction accuracy in grain production forecasting, making the decision more scientific and rational.

Keywords:

Combination forecasting, grain production forecasting, RBF neural network, stepwise regression method,


References


Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2042-4876
ISSN (Print):   2042-4868
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved