Research Article | OPEN ACCESS
Identification and Characterization of FaFT1: A Homolog of FLOWERING LOCUS T from Strawberry
Hengjiu Lei, Xiao Guo, Yantao Wang, Liping Yao, Shuang Wang and Tianhong Li
Department of Fruit Science, College of Agriculture and Biotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People’s Republic of China
Advance Journal of Food Science and Technology 2015 3:180-188
Received: December ‎4, ‎2014 | Accepted: January ‎8, ‎2015 | Published: May 15, 2015
Abstract
FLOWERING LOCUS T (FT)-like genes play crucial roles in flowering transition in several plant species. In this study, a homolog of FT, designated as FaFT1, was isolated and characterized from strawberry. The open reading frame of FaFT1 was 531 bp, encoding a protein of 176 amino acids. Phylogenetic and sequence analysis showed that the FaFT1 protein contained the conservation of Tyr84 and Gln139, as well as the highly conserved amino acid sequences LGRQTVYAPGWRQN and LYN and that it was a member of the FT-like genes of dicots. Subcellular localization analysis revealed that the FaFT1 protein mainly localized in the nuclei of the Arabidopsis protoplasts. FaFT1 was highly expressed in strawberry mature leaves and its expression level decreased under floral induction conditions. Additionally, FaFT1 expression exhibited diurnal circadian rhythm both under SD and LD conditions. Over expression of FaFT1 in wild-type Arabidopsis caused early flowering. Taken together, these results indicate that FaFT1 is a putative FT homolog in strawberry, acting as a floral promoter in Arabidopsis.
Keywords:
Arabidopsis, FaFT1, flowering, strawberry,
References
-
Abe, M., Y. Kobayashi, S. Yamamoto, Y. Daimon, A. Yamaguchi, Y. Ikeda, H. Ichinoki, M. Notaguchi, K. Goto and T. Araki, 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 309(5737): 1052-1056.
CrossRef PMid:16099979 -
Ahn J.H., D. Miller, V.J. Winter, M.J. Banfield, J.H. Lee, S.Y. Yoo, S.R. Henz, R.L. Brady and D. Weigel, 2006. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J., 25(3): 605-614.
CrossRef PMid:16424903 PMCid:PMC1383534 -
Boss, P.K., R.M. Bastow, J.S. Mylne and C. Dean, 2004. Multiple pathways in the decision to flower: Enabling, promoting and resetting. Plant Cell., 16(Suppl. 1): 18-31.
CrossRef PMid:15037730 PMCid:PMC2643402 -
Castillejo, C. and S. Pelaz, 2008. The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Curr. Biol., 18(17): 1338-1343.
CrossRef PMid:18718758 -
Chang, S., J. Puryear and J. Cairney, 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep., 11(2): 113-116.
CrossRef -
Clough, S.J. and A.F. Bent, 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J., 16(6): 735-743.
CrossRef PMid:10069079 -
Corbesier, L., C. Vincent, S. Jang, F. Fornara, Q. Fan, I. Searle, A. Giakountis, S. Farrona, L. Gissot, C. Turnbull and G. Coupland, 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 316(5827): 1030-1033.
CrossRef PMid:17446353 -
Fornara, F., A. de Montaigu and G. Coupland, 2010. Snapshot: Control of flowering in arabidopsis. Cell, 141(13): 550-550.e2.
CrossRef PMid:20434991 -
Hanzawa, Y., T. Money and D. Bradley, 2005. A single amino acid converts a repressor to an activator of flowering. P. Natl. Acad. Sci. USA, 102(21): 7748-7753.
CrossRef PMid:15894619 PMCid:PMC1140427 -
Heide, O.M. and A. Sønsteby, 2007. Interactions of temperature and photoperiod in the control of flowering of latitudinal and altitudinal populations of wild strawberry (Fragaria vesca). Physiol. Plant., 130(2): 280-289.
CrossRef -
Hsu, C.Y., J.P. Adams, H. Kim, K. No, C. Ma, S.H. Strauss, J. Drnevich, L. Vandervelde, J.D. Ellis, B.M. Rice, N. Wickett, L.E. Gunter, G.A. Tuskan, A.M. Brunner, G.P. Page, A. Barakat, J.E. Carlson, C.W. DePamphilis, D.S. Luthe and C. Yuceer, 2011. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. P. Natl. Acad. Sci. USA, 108(26): 10756-10761.
CrossRef PMid:21653885 PMCid:PMC3127867 -
Jaeger, K.E. and P.A. Wigge, 2007. FT protein acts as a long-range signal in Arabidopsis. Curr. Biol., 17(12): 1050-1054.
CrossRef PMid:17540569 -
Kim, J.J., J.H. Lee, W. Kim, H.S. Jung, P. Huijser and J.H. Ahn, 2012. The micro RNA 156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiol., 159(1): 461-478.
CrossRef PMid:22427344 PMCid:PMC3375978 -
Kobayashi, Y., H. Kaya, K. Goto, M. Iwabuchi and T. Araki, 1999. A pair of related genes with antagonistic roles in mediating flowering signals. Science, 286(5446): 1960-1962.
CrossRef PMid:10583960 -
Kobayashi, Y. and D. Weigel, 2007. Move on up, it's time for change-mobile signals controlling photoperiod-dependent flowering. Genes Dev., 21(19): 2371-2384.
CrossRef PMid:17908925 -
Kong, F., B. Liu, Z. Xia, S. Sato, B.M. Kim, S. Watanabe, T. Yamada, S. Tabata, A. Kanazawa, K. Harada and J. Abe, 2010. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol., 154(3): 1220-1231.
CrossRef PMid:20864544 PMCid:PMC2971601 -
Koskela, E.A., K. Mouhu, M.C. Albani, T. Kurokura, M. Rantanen, D.J. Sargent, N.H. Battey, G. Coupland, P. Elomaa and T. Hytönen, 2012. Mutation in TERMINAL FLOWER1 reverses the photoperiodic requirement for flowering in the wild strawberry Fragaria vesca. Plant Physiol., 159(3): 1043-1054.
CrossRef PMid:22566495 PMCid:PMC3387692 -
Kotoda, N., H. Hayashi, M. Suzuki, M. Igarashi, Y. Hatsuyama, S. Kidou, T. Igasaki, M. Nishiguchi, K. Yano, T. Shimizu, S. Takahashi, H. Iwanami, S. Moriya and K. Abe, 2010. Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus×domestica Borkh). Plant Cell Physiol., 51(4): 561-575.
CrossRef PMid:20189942 -
Li, C., L. Luo, Q. Fu, L. Ni and Z. Xu, 2014. Isolation and functional characterization of JcFT: A FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas. BMC Plant Biol., 14: 125.
CrossRef PMid:24886195 PMCid:PMC4036407 -
Li, D., C. Liu, L. Shen, Y. Wu, H. Chen, M. Robertson, C.A. Helliwell, T. Ito, E. Meyerowitz and H. Yu, 2008. A repressor complex governs the integration of flowering signals in Arabidopsis. Dev. Cell, 15(1): 110-120.
CrossRef PMid:18606145 -
Li, W.M., Y. Tao, Y.X. Yao, Y.J. Hao and C.X. You, 2010. Ectopic over-expression of two apple Flowering Locus T homologues, MdFT1 and MdFT2, reduces juvenile phase in Arabidopsis. Biol. Plantarum, 54(4): 639-646.
CrossRef -
Lifschitz, E., T. Eviatar, A. Rozman, A. Shalit, A. Goldshmidt, Z. Amsellem, J.P. Alvarez and Y, Eshed, 2006. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. P. Natl. Acad. Sci. USA, 103(16): 6398-6403.
CrossRef PMid:16606827 PMCid:PMC1458889 -
Livak, K.J. and T.D. Schmittgen, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-?? Ct method. Methods, 25(4): 402-408.
CrossRef PMid:11846609 Direct Link -
Mathieu, J., N. Warthmann, F. Küttner and M. Schmid, 2007. Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr. Biol., 17(12): 1055-1060.
CrossRef PMid:17540570 -
Mathieu, J., L.J. Yant, F. Mürdter, F. Küttner and M. Schmid, 2009. Repression of flowering by the miR172 target SMZ. PLoS Biol., 7(7): e1000148.
CrossRef PMid:19582143 PMCid:PMC2701598 -
Mouhu, K., T. Hytönen, K. Folta, M. Rantanen, L. Paulin, P. Auvinen and P. Elomaa, 2009. Identi?cation of flowering genes in strawberry, a perennial SD plant. BMC Plant Biol., 9: 122.
CrossRef PMid:19785732 PMCid:PMC2761920 -
Mouhu, K., T. Kurokura, E.A. Koskela, V.A. Albert, P. Elomaa and T. Hytönen, 2013. The Fragaria vesca homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 represses flowering and promotes vegetative growth. Plant Cell, 25(9): 3296-3310.
CrossRef PMid:24038650 PMCid:PMC3809533 -
Oda, A., T. Narumi, T. Li, T. Kando, Y. Higuchi, K. Sumitomo, S. Fukai and T. Hisamatsu, 2012. CsFTL3: A chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums. J. Exp. Bot., 63(3): 1461-1477.
CrossRef PMid:22140240 PMCid:PMC3276106 -
Parcy, F., 2005. Flowering: A time for integration. Int. J. Dev. Biol., 49: 585-593.
CrossRef PMid:16096967 -
Pin, P. and O. Nilsson, 2012. The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ., 35(10): 1742-1755.
CrossRef PMid:22697796 -
Saitou, N. and M. Nei, 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4(4): 406-425.
PMid:3447015 -
Sawa, M. and S.A. Kay, 2011. GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. P. Natl. Acad. Sci. USA, 108(28): 11698-11703.
CrossRef PMid:21709243 PMCid:PMC3136272 -
Suárez-López, P., K. Wheatley, F. Robson, H. Onouchi, F. Valverde and G. Coupland, 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410(6832): 1116-1120.
CrossRef PMid:11323677 -
Tamaki, S., S. Matsuo, H.L. Wong, S. Yokoi and K. Shimamoto, 2007. Hd3a protein is a mobile flowering signal in rice. Science, 316 (5827): 1033-1036.
CrossRef PMid:17446351 -
Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar, 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol. Biol. Evol., 28(10): 2731-2739.
CrossRef PMid:21546353 PMCid:PMC3203626 -
Teper-Bamnolker, P. and A. Samach, 2005. The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell, 17(10): 2661-2675.
CrossRef PMid:16155177 PMCid:PMC1242264 -
Thompson, J.D., D.G. Higgins and T.J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22(22): 4673-4680.
CrossRef PMid:7984417 PMCid:PMC308517 Direct Link -
Wenkel, S., F. Turck, K. Singer, L. Gissot, J. Le Gourrierec, A. Samach and G. Coupland, 2006. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell, 18(11): 2971-2984.
CrossRef PMid:17138697 PMCid:PMC1693937 -
Wigge, P.A., M.C. Kim, K.E. Jaeger, W. Busch, M. Schmid, J.U. Lohmann and D. Weigel, 2005. Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 309(5737): 1056-1059.
CrossRef PMid:16099980 -
Xiang, L., X. Li, D. Qin, F. Guo, C. Wu, L. Miao and C. Sun, 2012. Functional analysis of FLOWERING LOCUS T orthologs from spring orchid (Cymbidium goeringii Rchb. f.) that regulates the vegetative to reproductive transition. Plant Physiol. Biochem., 58: 98-105.
CrossRef PMid:22796899 -
Yoo, S.D., Y.H. Cho and J. Sheen, 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc., 2(7): 1565-1572.
CrossRef PMid:17585298
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2042-4876
ISSN (Print): 2042-4868 |
|
Information |
|
|
|
Sales & Services |
|
|
|