Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Advance Journal of Food Science and Technology


Partial Characterization of an Anti-Candida albicans Bacteriocin Produced by a Marine Strain of Bacillus sp., Sh10

1Fatemeh Shayesteh, 2Asmat Ahmad and 1Gires Usup
1School of Environmental Science and Natural Resources
2School of Bioscience and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Advance Journal of Food Science and Technology  2015  9:664-671
http://dx.doi.org/10.19026/ajfst.9.1757  |  © The Author(s) 2015
Received: May ‎19, ‎2014  |  Accepted: June ‎18, ‎2014  |  Published: September 15, 2015

Abstract

The bacteriocin-producing strain Bacillus sp., Sh10, isolated from the marine environment, exhibited a broad spectrum of antimicrobial activity against different food spoilage and human pathogens, with a maximum inhibitory activity against Candida albicans. The inhibitory compound was sensitive to trypsin but resistant to proteinase K, lysozyme, lipase and α-amylase. It was heat-stable and remained its activity after autoclaving. In addition, the antimicrobial substance demonstrated striking stability at low temperatures (4 and -20°C) for up to one year and retained its activity in a wide pH range from 2 to 11. It was also stable and active in the presence of different surfactants, solvents and heavy metals. Analysis of the partially purified bacteriocin by SDS-PAGE showed an apparent molecular weight of ~11 KDa. This study reveals a remarkable potential of this bacteriocin to be used as a food preservative.

Keywords:

Bacillus sp, Sh10, bacteriocin, Candida albicans, marine clam, partial characterization,


References

  1. Abriouel, H., C. Franz, N.B. Omar and A. Gálvez, 2010. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev., 35(1): 201-232.
    CrossRef    PMid:20695901    Direct Link
  2. Albano, H., S.D. Todorov, C.A. Van Reenen, T. Hogg, L.M. Dicks and P. Teixeira, 2007. Characterization of two bacteriocins produced by Pediococcus acidilactici isolated from “Alheira”: A fermented sausage traditionally produced in Portugal. Int. J. Food Microbiol., 116: 239-247.
    CrossRef    PMid:17368595    Direct Link
  3. Altschul, S.F., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller and D.J. Lipman, 1997. Gapped BLAST and PSI- LAST: A new generation of protein database search programs. Nucleic Acids Res., 25: 3389-3402.
    CrossRef    PMid:9254694 PMCid:PMC146917    Direct Link
  4. Bizani, D. and A. Brandelli, 2002. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. strain 8 A. J. Appl. Microbiol., 93: 521-519.
    CrossRef    Direct Link
  5. Cherif, A.S., H. Ouzari, D. Daffonchio, H. Cherif, K. Ben Slama, A. Hassen, S. Jaoua and A. Boudabous, 2001. Thuricin 7: A novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol., 32: 243-247.
    CrossRef    PMid:11298934    Direct Link
  6. Cherif, A.S., S. Chehimi, F. Limen, B.M. Hansen, N.B. Hendriksen, D. Daffonchio and A. Boudabous, 2003. Detection and characterization of the novel bacteriocin entomocin 9 and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. J. Appl. Microbiol., 95: 990-1000.
    CrossRef    PMid:14633027    Direct Link
  7. Drobniewski, F.A., 1993. Bacillus cereus and related species. Clin. Microbiol. Rev., 6: 324-338.
    PMid:8269390 PMCid:PMC358292    Direct Link
  8. Fangio, M.F. and R. Fritz, 2013. Preliminary characterization of a bacteriocin-like substance produced by a Bacillus subtilis isolated from Argentinean vegetable food. Ital. J. Food Sci., 25(2): 181-188.
    Direct Link
  9. Felsenstein, J., 1985. Estimation of confidence in phylogeny: The complete-and-partial bootstrap technique. Mol. Phylogenet. Evol., 39: 783-791.
    Direct Link
  10. Folch, J., M. Lees and G.H.S. Stanley, 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 226: 497-509.
    PMid:13428781    Direct Link
  11. Galvez, A., R.L. Lopez, H. Abriouel, E. Valdivia and N.B. Omar, 2008. Application of bacteriocins in the control of food borne pathogenic and spoilage bacteria. Crit. Rev. Biotechnol., 28: 125-152.
    CrossRef    PMid:18568851    Direct Link
  12. Hall, T.A., 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser., 41: 95-98.
    Direct Link
  13. Hammami, I., A. Rhouma, B. Jaouadi, A. Rebai and X. Nesme, 2009. Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Lett. Appl. Microbiol., 48: 253-260.
    CrossRef    PMid:19196444    Direct Link
  14. Helgason, E., O.A. Okstad, D.A. Caugant, H.A. Johansen, A. Fouet, M. Mock, I. Hegna and A.B. Kolstø, 2000. Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis-one species on the basis of genetic evidence. Appl. Environ. Microb., 66: 2627-2630.
    CrossRef    PMid:10831447 PMCid:PMC110590    Direct Link
  15. Hoover, D.G. and S.K. Harlander, 1993. Screening Methods for Detecting Bacteriocin Activity. In: Hoover, D.G. and L.R. Steenscr (Eds.), Bacteriocins of Lactic Acid Bacteria. Academic Press, San Diego, pp: 23-39.
    CrossRef    Direct Link
  16. Hussein, S.H. and J.M. Brasel, 2001. Toxicity, metabolism and impact of mycotoxins on human and animals. Toxicology, 167(2): 101-134.
    CrossRef    Direct Link
  17. Hyronimus, B., C. Le Merrec and M.C. Urdaci, 1998. Coagulin: A bacteriocin-like inhibitory substance produced by Bacillus coagulans I4. J. Appl. Microbiol., 85: 42-50.
    CrossRef    PMid:9721655    Direct Link
  18. Jack, R.W., J.R. Tagg and B. Ray, 1995. Bacteriocins of gram-positive bacteria. Microbiol. Rev., 59: 171-200.
    PMid:7603408 PMCid:PMC239359    Direct Link
  19. Kamoun, F., H. Mejdoub, H. Aouissaoui, J. Reinbolt, A. Hammami and S. Jaoua, 2005. Puri?cation, amino acid sequence and characterization of Bacthuricin F4: A new bacteriocin produced by Bacillus thuringiensis. J. Appl. Microbiol., 98: 881-888.
    CrossRef    PMid:7603408 PMCid:PMC239359    Direct Link
  20. Kaneda, T., 1968. Fatty acids in the genus bacillus 2: Similarity in the fatty acid composition of Bacillus thuringiensis, Bacillus anthrasis and Bacillus cereus. J. Bacteriol., 95(6): 2210-2216.
    PMid:4970227 PMCid:PMC315155    Direct Link
  21. Kayalvizhi, N. and P. Gunasekaran, 2008. Production and characterization of a low-molecular-weight bacteriocin from Bacillus licheniformis MKU3. Lett. Appl. Microbiol., 47: 600-607.
    CrossRef    PMid:19120933    Direct Link
  22. Klaenhammer, T.R., 1988. Bacteriocin of lactic acid bacteria. Biochemie, 70(3): 337-349.
    CrossRef    Direct Link
  23. Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.
    CrossRef    PMid:5432063    
  24. Le Marrec, C., B. Hyronimus, P. Bressollier, B. Verneuil and M.C. Urdaci, 2000. Biochemical and genetic characterization of coagulin: A new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I(4). Appl. Environ. Microbiol., 66: 5213-5220.
    CrossRef    PMid:11097892 PMCid:PMC92446    Direct Link
  25. Liu, W. and J.N. Hansen, 1990. Some chemical and physical properties of nisin, a small protein antibiotic produced by Lactococcus lactis. Appl. Environ. Microbiol., 56: 2551-2558.
    PMid:2119570 PMCid:PMC184764    Direct Link
  26. Logan, N.A. and R.C.W. Berkeley, 1984. Identification of Bacillus strains using the API system. J. Gen. Microbiol., 130: 1871-1882.
    CrossRef    Direct Link
  27. Mah, J.H., K.S. Kim, J.H. Park, M.W. Byun, Y.B. Kim and H.J. Hwang, 2001. Bacteriocin with a broad antimicrobial spectrum, produced by Bacillus sp., isolated from kimchi. J. Microbiol. Biotechn., 11: 577-584.
    Direct Link
  28. Mandal, V., S.K. Sen and N.C. Mandal, 2008. Optimized culture conditions for bacteriocin production by Pediococcus acidilactici LAB 5 and its characterization. Indian J. Biochem. Bio., 45: 106-110.
    PMid:21086723    Direct Link
  29. Mandel, M., L. Igambi, J. Bergendahl, M.L. Dodson Jr. and E. Scheltgen, 1970. Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J. Bacteriol., 101: 333-338.
    PMid:5413818 PMCid:PMC284910    Direct Link
  30. Marmur, J. and P. Doty, 1962. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol., 5: 109-118.
    CrossRef    Direct Link
  31. Mitra, S., P.K. Chakrabartty and S.R. Biswas, 2005. Production and characterization of nisin-like peptide produced by a strain of Lactococcus lactis isolated from fermented milk. Curr. Microbiol., 51: 183-187.
    CrossRef    PMid:16059770    Direct Link
  32. Oscariz, J.C., I. Lasa and A.G. Pisabarro, 1999. Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiol. Lett., 178: 337-341.
    CrossRef    PMid:10499284    Direct Link
  33. Oscariz, J.C. and A.G. Pisabarro, 2000. Characterization and mechanism of action of cerein 7, a bacteriocin produced by Bacillus cereus Bc7. J. Appl. Microbiol., 89: 361-369.
    CrossRef    PMid:10971770    Direct Link
  34. Osmanagaoglu, O., F. Kiran and I.F. Nes, 2011. A probiotic bacterium, Pediococcus pentosaceus OZF, isolated from human breast milk produces pediocin AcH/PA-1. Afr. J. Biotechnol., 10: 2070-2079.
    Direct Link
  35. Poh, S.L., F.N. Yun, D.P. Savithri and W.W. Chee, 1983. Comparison of Two Methods for Bacteriocin Typing of Serratia marcescens. J. Clin. Microbiol., 17: 1-6.
    Direct Link
  36. Pridham, T.G. and D. Gottlieb, 1948. The utilization of carbon compounds by some Actinomycetales as an aid for species determination. J. Bacteriol., 56: 107-114.
    PMid:16561537 PMCid:PMC518551    Direct Link
  37. Priest, F.G., 1981. DNA Homology in the Genus Bacillus. In: Berkeley, R.C. and M. Goodfellow (Eds.), the Aerobic Endosporeforming Bacteria. Academic Press, London, pp: 33-57.
    Direct Link
  38. Romanenko, L.A., M. Uchino, N.I. Kalinovskaya and V.V. Mikhailov, 2008. Isolation, phylogenetic analysis and screening of marine mollusc-associated bacteria for antimicrobial, hemolytic and surface activities. Microbiol. Res., 163: 633-644.
    CrossRef    PMid:19216104    Direct Link
  39. Sarika, A.R., A.P. Lipton and M.S. Aishwarya, 2010. Bacteriocin production by a new isolate of Lactobacillus rhamnosus GP1 under different culture conditions. Adv. J. Food Sci. Technol., 2(5): 291-297.
    Direct Link
  40. Selvin, J., S. Joseph, K.R. Asha, W.A. Manjusha, V.S. Sangeetha, D.M. Jayaseema, M.C. Antony and A.J. Denslin Vinitha, 2004. Antibacterial potential of antagonistic Streptomyces sp. isolated from marine sponge Dendrilla nigra. FEMS Microbiol. Ecol., 50: 117-122.
    CrossRef    PMid:19712370    Direct Link
  41. Seuk-Hyun, K. and A. Cheol, 2000. Bacteriocin production by Lactococcus lactis KCA 2386 isolated from white kimchi. Food Sci. Biotechnol., 9: 263-269.
    Direct Link
  42. Tamura, K., J. Dudley, M. Nei and S. Kumar, 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24: 1596-1599.
    CrossRef    PMid:17488738    Direct Link
  43. Thompson, J.D., D.G. Higgins and T.J. Gibson, 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673-4680.
    CrossRef    PMid:7984417 PMCid:PMC308517    Direct Link
  44. Xie, J., R. Zhang, C. Shang and Y. Guo, 2009. Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFb112 that exhibits antimicrobial activity against domestic animal pathogens. Afr. J. Biotechnol., 8(20): 5611-5619.
    Direct Link

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2042-4876
ISSN (Print):   2042-4868
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved