Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Advance Journal of Food Science and Technology


Optimization of Lactobacillus fermentum DSM 20049 Growth on Whey and Lupin Based Medium Using Response Surface Methodology

1Saida Hanoune, 1, 2Baida Djeghri-Hocine, 1Zohra Kassas, 1Zineb Derradji, 1Aicha Boudour and 1Messaouda Boukhemis
1Département de Biochimie, Faculté des Sciences, Laboratoire de Biochimie et Microbiologie Appliquée, Université Badji-Mokhtar BP12, 23000 Annaba, Algérie
2Ecole Nationale Supérieure des Sciences de la Mer et de L’aménagement du Littoral, Alger, Algérie
Advance Journal of Food Science and Technology  2015  9:679-685
http://dx.doi.org/10.19026/ajfst.9.1759  |  © The Author(s) 2015
Received: March ‎12, ‎2015  |  Accepted: April ‎1, ‎2015  |  Published: September 15, 2015

Abstract

The aim of this study was to evaluate the potential use of whey components and lupin proteins as cheap nutrients in the formulation of optimum medium for lactic acid bacteria growth, for this purpose a Plackett and Burman design was used to screen variables (medium components and physical parameters) that have significant effects on the growth of Lactobacillus fermentum DSM 20049 in whey and lupin based medium. Statistical analysis of the results allowed selecting two factors having a significant positive effect on the bacterial growth (tween 80 and inoculum size). Central composite design was used to determine the optimum level of the selected factor. Under these optimized conditions, the composition of WLM (Whey and Lupin Medium) was the basic medium of whey and lupin supplemented with 1.56 mL/L of tween and inoculated at a rate of 5.25% with a maximum OD600 value of 6.88. Based on the comparison of Lactobacillus fermentum DSM 20049 growth on the formulated medium with that observed on MRS (standard laboratory medium), the growth of the strain in WLM is much higher than that observed in MRS medium with a maximum OD600 values of 7.04 on LWM and 4.08 on MRS medium, respectively and Lactobacillus fermentum DSM 20049 growth in the new medium was 72.54% higher than that on MRS. Thus, whey and lupin hydrolysates are good alternative sources of nitrogen that lead to a better growth of the strain and can be used for large-scale production.

Keywords:

Growth medium, Lactobacillus fermentum DSM 20049, lupin, optimization, whey,


References

  1. Amrane, A., 2000. Evaluation of lactic acid bacteria autolysate for the supplementation of lactic acid bacteria fermentation. World J. Microb. Biot., 16: 207-209.
    CrossRef    Direct Link
  2. Bulatovic, M.L., B.R. Marica, V.M. Ljiljana, B.N. Svetlana, S.V.S. Maja and P.D.V. Aleksandra, 2014. Improvement of production performance of functional fermented whey based beverage. Chem. Ind. Chem. Eng. Q., 20(1): 1-153.
    CrossRef    Direct Link
  3. Chango, A., C. Villaume, H.M. Bau and J.P. Nicolas, 1995. Fractionation by thermal coagulationof lupin proteins: Physicochemical characteristics. Food Res. Int., 28: 91-99.
    CrossRef    Direct Link
  4. Dervas, G., G. Doxastakis, S. Zinoviadi and N. Triandatafillakos, 1999. Lupin flour addition to wheat flour doughs and effect on rhelogical properties. Food Chem., 66: 67-73.
    CrossRef    Direct Link
  5. Djeghri-Hocine, B., M. Boukhemis, N. Zidoune and A. Amrane, 2006. Horse bean extract for the supplementation of lactic acid bacteria culture media. J. Food Technol., 4(4): 299-302.
    http://onlinelibrary.wiley.com.bjdgm.cn/doi/10.1111/j.1471-0307.2007.00351.x/references
  6. Djeghri-Hocine, B., M. Boukhemis, N. Zidoune and A. Amrane, 2007a. Growth of lactic acid bacteria on oilseed crop pea- and chickpea-based media. World J. Microb. Biot., 23(6): 765-769.
    CrossRef    Direct Link
  7. Djeghri-Hocine, B., M. Boukhemis, N. Zidoune and A. Amrane, 2007b. Evaluation of de-lipidated egg yolk and yeast autolysate as growth supplements for lactic acid bacteria culture. Int. J. Dairy Technol., 60(4): 292-296.
    CrossRef    Direct Link
  8. Djeghri-Hocine, B., M. Boukhemis and A. Amrane, 2010. Formulation and Evaluation of a selective medium for lactic acid bacteria-validation on some dairy products. Am. J. Agr. Biol. Sci., 5(2): 184-153.
    CrossRef    Direct Link
  9. Dong, Z., L. Lei Gu, J. Zhang, M. Miao Wang, G. Du, J. Chen and H. Li, 2014. Optimisation for high cell density cultivation of Lactobacillus salivarius BBE 09-18 with response surface methodology. Int. Dairy J., 34: 230-236.
    CrossRef    Direct Link
  10. Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28: 350-356.
    CrossRef    
  11. Erbas, M., M. Certel and M.K. Uslu, 2005. Some chemical properties of white lupin seeds (Lupinus albus L.). Food Chem., 89: 341-345.
    CrossRef    
  12. Georgiva, R., D. Koleva, D. Nikolova, D. Yankov and S. Danova, 2009. Growth parameters of probiotic strain Lactobacillus plantarum, isolated from traditional white cheese. Biotechnol. Biotec. Eq., 23: 861-865.
    CrossRef    Direct Link
  13. Gulewicz, P., C. Marti´nez-Villaluenga, J. Frias, D. Ciesiolka, K. Gulewicz and C. Vidal-Valverde, 2008. Effect of germination on the protein fraction composition of different lupin seeds. Food Chem., 107: 830-844.
    CrossRef    Direct Link
  14. Hassinen, J., G. Durbin, R. Tomarelli and F. Bernhart, 1951. The minimal nutritional requirements of Lactobacillus bifidus. J. Bacteriol., 62: 771-777.
    PMid:14907631 PMCid:PMC386201    Direct Link
  15. Horn, S.J., S.I. Aspmo and V.G.H. Eijsink, 2007. Evaluation of different cod viscera fractions and their seasonal variation used in a growth medium for lactic acid bacteria. Enzyme Microb. Tech., 40: 1328-1334.
    CrossRef    Direct Link
  16. Hujanen, M. and Y.Y. Linko, 1996. Effect of temperature and various nitrogen sources on L (+)-lactic acid production by Lactobacillus casei. Appl. Microbiol. Biot., 45: 307-313.
    CrossRef    Direct Link
  17. JuárezTomás, M.S., E. Bru, B. Wiese and M.E.F. Nader-Macías, 2010. Optimization of low-cost culture media for the production of biomass and bacteriocin by a urogenital Lactobacillus salivarius strain. Probiotic Antimicr. Prot., 2: 2-11.
    CrossRef    PMid:26780896    Direct Link
  18. Kwon, S., P.C. Lee, E.G. Lee, Y.K. Chang and N. Chang, 2000. Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme Microb. Tech., 26: 209-215.
    CrossRef    Direct Linkhttp://www.sciencedirect.com/science/article/pii/S0141022999001349
  19. Lee, H.M. and Y. Lee, 2008. A differential medium of lactic acid-producing bacteria in a mixed culture. Lett. Appl. Microbiol., 46: 676-681.
    CrossRef    PMid:18444977    Direct Link
  20. Liu, B., M. Yang, B. Qia, X. Chena, Z. Sua and Y. Wana, 2010. Optimizing l-(+)-lactic acid production by thermophile Lactobacillus plantarum As.1.3 using alternative nitrogen sources with response surface method. Biochem. Eng. J., 52: 212-219.
    CrossRef    Direct Link
  21. Louaileche, H., P. Bracquart, F. Saulnier, M. Desmazeaud and G. Linden, 1993. Carbon dioxide effects on the growth and metabolites of morphological variants of Streptococcus thermophilus. J. Dairy Sci., 76: 3683-3689.
    CrossRef    Direct Link
  22. Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall, 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem., 193(1): 265-275.
  23. Mart?nez-Villaluenga, C. and R. Gómez, 2007. Characterization of bifidobacteria as starters in fermented milk containing raffinose family of oligosaccharides from lupin as prebiotic. Int. Dairy J., 17: 116-122.
    Direct Link
  24. Panesar, P.S., J.F. Kennedy, D.N. Gandi and K. Bunko, 2007. Bioutilisation of whey for lactic acid production. Food Chem., 105: 1-14.
    CrossRef    Direct Link
  25. Papagora, C., T. Roukas and P. Kotzekidou, 2013. Optimization of extracellular lipase production by Debaryomyces hansenii isolates from dry-salted olives using response surface methodology. Food Bioprod. Process., 91: 413-420.
    CrossRef    Direct Link
  26. Partanen, L., N. Marttinen and T. Alatossava, 2001. Fats and fatty acids as growth factors for Lactobacillus delbrueckii. Syst. Appl. Microbiol., 24: 500-506.
    CrossRef    PMid:11876356    Direct Linkhttp://www.ncbi.nlm.nih.gov/pubmed/11876356
  27. Pescuma, M., E.M. Hébert, F. Mozzi and G. Fond de Valdez, 2008. Whey fermentation by thermophilic lactic acid bacteria: Evolution of carbohydrates and protein content. Food Microbiol., 25: 442-451.
    CrossRef    PMid:18355669    Direct Link
  28. Plackett, R.L. and J.P. Burman, 1946. The design of optimum multifactorial experiments. Biometrika, 33: 305-325.
    CrossRef    Direct Link
  29. Rattanachaikunsopon, P. and P. Phumkhachorn, 2010. Lactic acid bacteria: Their antimicrobial compounds and their uses in food production. Ann. Biol. Res., 1(4): 218-228.
    Direct Link
  30. Rodríguez-Carrio, J., A. Fernández, F.A. Riera and A. Sáurez, 2014. Immunomodulatory activities of whey ß-lactoglobulin tryptic-digested fractions. Int. Dairy J., 34: 65-73.
    CrossRef    Direct Link
  31. Soares de Castro, R.J. and H.H. Sato, 2014. Functional properties and growth promotion of bifidobacteria and lactic acid bacteria strains by protein hydrolysates using a statistical mixture design. Food Biosci., 7: 19-30.
    CrossRef    Direct Link
  32. Vázquez, J.A. and M.A. Murado, 2008. Mathematical tools for objective comparison of microbial cultures: Application to evaluation of 15 peptones for lactic acid bacteria productions. Biochem. Eng. J., 39: 176-287.
    CrossRef    Direct Link
  33. Vázquez, J.A., S.F. Docasal, M.A. Prieto, M.A. González and M.A. Murado, 2008. Growth and metabolic features of lactic acid bacteria in media with hydrolysed fish viscera. An approach to bio-silage of fishing by-products. Bioresource Technol., 99: 6246-6257.
    CrossRef    PMid:18226525    Direct Link
  34. Wong, N.P., D.E. Lacroix and F.E. Mcdounough, 1978. Minerals in whey and whey fractions. J. Dairy Sci., 61: 1700-1703.
    CrossRef    Direct Link
  35. Xu, H., L. Sun, D. Zhao, B. Zhang, Y. Shi and Y. Wu, 2008. Production of a-amylase by Aspergillus oryzae As-3951 in solidstate fermentation using spent brewing grains as substrate. J. Sci. Food Agr., 88(3): 529-535.
    CrossRef    Direct Link

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2042-4876
ISSN (Print):   2042-4868
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved