Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Advance Journal of Food Science and Technology


Cadmium Stress Induced Changes in Antioxidant Enzymes, Lipid Peroxidation and Hydrogen Peroxide Contents in Barley Seedlings

1Amel Alayat, 2Lynda Souiki, 1Mohammed Reda Djebar, 1Zine Eddine Boumedris, 1Ouissem Moumeni and 1Houria Berrebbah
1Department of Biology, Faculty of Sciences, Cellular Toxicology Laboratory, University of Badji Mokhtar, Annaba 23000, Algeria
2Department of Biology, University of 8 May 1945, Guelma 24000, Algeria
Advance Journal of Food Science and Technology   2015  7:507-513
http://dx.doi.org/10.19026/ajfst.9.1956  |  © The Author(s) 2015
Received: February ‎22, ‎2015  |  Accepted: March ‎1, ‎2015  |  Published: September 05, 2015

Abstract

Cadmium pollution is a problem of increasing significance for ecological, nutritional and environmental reasons. Different plant species and varieties show a wide range of plasticity in Cadmium tolerance, from a high degree of sensitivity to the hyper-accumulating phenotype of some tolerant plants. To avoid Cadmium toxicity, plants adopt various defense strategies. The present study was undertaken to assess and investigate the antioxidant responses of barley (Hordeum vulgare L.) to cadmium treatment, seedlings of barley were grown in increasing concentrations of CdCl2 ranging from 25-100 &muM, for up 14 days in a hydroponic system. The results showed that CdCl2 reduce pigment content and caused oxidative damage as characterized by increased total soluble protein, Malondialdehyde (MDA) and Hydrogen peroxide (H2O2) contents. Under cadmium stress, the activities of antioxidative enzymes, including Ascorbate Peroxidase (APX), Peroxidase (POD) and Catalase (CAT) were increased considerably in plant tissues. The present results allow us to conclude that the barley plants showed a negative response to cadmium toxicity. The physiological and biochemical process in plants was significantly affected by stress of CdCl2. To deal with the cadmium induced oxidative stress, barley plants activated antioxidant enzymes to diminish the Reactive Oxygen Species (ROS).

Keywords:

Antioxidant enzyme, cadmium, Hordeum vulgare, oxidative stress, reactive oxygen species, tolerance,


References

  1. Agami, R.A. and G.F. Mohamed, 2013. Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotox. Environ. Safe., 94: 164-171.
    CrossRef    PMid:23684274    Direct Link
  2. Ali, S., P. Bai, F. Zeng, S. Cai, I.H. Shamsi, B. Qiu, F. Wu and G. Zhang, 2011. The ecotoxicological and interactive effects of chromium and aluminum on growth, oxidative damage and antioxidant enzymes on two barley genotypes differing in Al tolerance. Environ. Exp. Bot., 70: 185-191.
    CrossRef    Direct Link
  3. Ali, S., M.A. Farooq, M.M. Jahangir, F. Abbas, S.A. Bharwana and G.P. Zhang, 2013. Effect of chromium and nitrogen form on photosynthesis and anti-oxidative system in barley. Biol. Plantarum., 57: 758-763.
    CrossRef    
  4. Aravind, P. and M.N.V. Prasad, 2003. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: A free floating freshwater macrophyte. Plant Physiol. Bioch., 41: 391-397.
    CrossRef    Direct Link
  5. Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol., 24: 1-15.
    CrossRef    PMid:16654194 PMCid:PMC437905    Direct Link
  6. Belkhadi, A., H. Hediji, Z. Abbes, I. Nouairi, Z. Barhoumi, M. Zarrouk, W. Chaibi and W. Djebali, 2010. Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotox. Environ. Safe., 73: 1004-1011.
    CrossRef    PMid:20399499    Direct Link
  7. Boulila, Z.L., W. Djebali, W. Chaibi and M.H. Ghorbel, 2006. Modifications physiologiques et structurales induites par l’interaction cadmium-calcium chez la tomate (Lycopersicon esculentum). C. R. Biol., 329: 702-711.
    CrossRef    PMid:16945836    Direct Link
  8. Bradford, M.M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 278-254.
    CrossRef    Direct Link
  9. Cakmak, I. and W.J. Horst, 1991. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plantarum, 83: 463-468.
    CrossRef    Direct Link
  10. Chou, T.S., Y.Y. Chao and C.H. Kao, 2012. Involvement of hydrogen peroxide in heat shock- and cadmium-induced expression of ascorbate peroxidase and glutathione reductase in leaves of rice seedlings. J. Plant Physiol., 169: 478-86.
    CrossRef    PMid:22196946    Direct Link
  11. Davis, R.D., 1984. Cadmium-a complex environmental problem: Cadmium in sludge used as fertilizer. Experientia, 40: 117-126.
    CrossRef    PMid:6321225    Direct Link
  12. Devi, S.R. and M.N.V. Prasad, 1998. Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: Response of antioxidant enzymes and antioxidants. Plant Sci., 138: 157-165.
    CrossRef    Direct Link
  13. Dionisio-Sese, M.L. and S. Tobita, 1998. Antioxidant response of rice seedlings to salinity stress. Plant Sci., 135: 1-9.
    Direct Link
  14. Foyer, C.H., H. Lopez-Delgado, J.F. Dat and I.M. Scott, 1997. Hydrogen peroxide- and glutathione-associated mechanisms of acclamatory stress tolerance and signalling. Physiol. Plantarum., 100: 241-254.
    CrossRef    Direct Link
  15. Ghosh, M. and S.P. Singh, 2005. A review on phytoremediation of heavy metals and utilization of its by products. Appl. Ecol. Env. Res., 3: 1-18.
    CrossRef    Direct Link
  16. Groppa, M.D., M.L. Tomaro and M.P. Benavides, 2007. Polyamines and heavy metal stress: The antioxidant behavior of spermine in cadmium- and copper-treated wheat leaves. BioMetals, 20: 185-195.
    CrossRef    PMid:17068660    Direct Link
  17. Haiyan, Z., J. Yingnan, H. Zhenyan and M. Mi, 2005. Cadmium accumulation and oxidative burst in garlic (Allium sativum). J. Plant Physiol., 162: 977-984.
    CrossRef    PMid:16173459    Direct Link
  18. Hegedüs, A., S. Erdei and G. Horváth, 2001. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedling under Cadmium stress. Plant Sci., 160: 1085-1093.
    CrossRef    Direct Link
  19. Hodges, D.M., J.M. DeLong, C.F. Forney and R.K. Prange, 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207: 604-611.
    CrossRef    Direct Link
  20. Issaad, G., M.R. Djebar and H. Berrebbah, 2013. ROS and redox signalling in the response of stems of wheat durum to abiotic stress. Int. J. Biosci., 10: 298-305.
    Direct Link
  21. Kirkham, M.B., 2006. Cadmium in plants on polluted soils: Effects of soil factors, hyper accumulation and amendments. Geoderma, 137: 19-32.
    CrossRef    
  22. Lagadic, L., T. Caquet, J.C. Amiard and F. Ramade, 1997. Biomarkers in Ecotoxicology: Principles and Definitions. In: Lagadic, L., T. Caquet, J.C. Amiard and F. Ramade (Eds.), Biomarkers Ecotoxicology Fundamentals. Masson, Londres, Paris, New York, pp: 1-9.
  23. Lei, X.G., J.M. Porres, E.J. Mullaney and H. Brinch-Pedersen, 2007. Phytase: Source, Structure and Application. In: Polaina, J. and A.P. MacCabe (Eds.): Industrial Enzymes: Structure, Function and Applications. Springer, Dordrecht, the Netherlands, pp: 50o5-5529.
    CrossRef    Direct Link
  24. Lesser, M.P., 2006. Oxidative stress in marine environments: Biochemistry and physiological ecology. Annu. Rev. Physiol., 68: 253-278.
    CrossRef    PMid:16460273    Direct Link
  25. Lichtenthaler, H.K. and A.R. Wellburn, 1985. Determinations of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochem. Soc. T., 11: 591-592.
    Direct Link
  26. Lopez-Millan, A.F., R. Sagardoy, M. Solanas, A. Abadia and J. Abadia, 2009. Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ. Exp. Bot., 65: 376-385.
    CrossRef    Direct Link
  27. Maas, E.V. and G.J. Hoffman, 1977. Crop salt tolerance-current assessment. J. Irrig. Drain. Div. ASCE, 103: 115-134.
    Direct Link
  28. Mohamed, A.A., A. Castagna, A. Ranieri and L. Sanità di Toppi, 2012. Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiol. Biochem., 57: 15-22.
    CrossRef    PMid:22652410    Direct Link
  29. Moussa, H.R., 2004. Effect of cadmium on growth and oxidative metabolism of faba bean plants. Acta Agron. Hung., 52: 269-276.
    CrossRef    Direct Link
  30. Mysliwa-Kurdziel, B. and K. Strzalka, 2002. Influence of Metals on Biosynthesis of Photosynthetic Pigments. In: Prasad, M.N.V. and K. Strzalka (Eds.), Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. Kluwer Academic Publishers, Dordrecht, the Netherlands, pp: 201-227.
    CrossRef    Direct Link
  31. Nakano, Y. and K. Asada, 1987. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate depleted medium and reactivation by monodehydro ascorbate radical. Plant Cell Physiol., 28: 131-140.
  32. Prasad, M.N.V., 1995. Cadmium toxicity and tolerance in vascular plants. Environ. Exp. Bot., 35: 525-545.
  33. Putter, J., 1974. Peroxidases. In: Bergmeyer, H.U. (Ed.), Methods of Enzymatic Analysis. Vol. 2, Academic Press, New York, USA, pp: 685-690.
  34. Ramel, F., C. Sulmon, M. Bogard, I. Couée and G. Gouesbet, 2009. Differential patterns of reactive oxygen species and oxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol., 9: 28.
  35. Sandalio, L.M., H.C. Dalurzo, M. Gomez, M.C. Romero-Puertas and L.A. Del Rio, 2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot., 52: 2115-2126.
  36. Sanita di Toppi, L. and R. Gabbrielli, 1999. Response to cadmium in higher plants. Environ. Exp. Bot., 41: 105-130.
  37. Shah, K., R.G. Kumar, S. Vermaand R.S. Dube, 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci., 161(6): 1135-1144.
  38. Shutzendubel, A. and A. Polle, 2002. Plant responses to abiotic stress: Heavy metal-induced oxidative stress protection by mycorrhization. J. Exp. Bot., 53: 1351-1365.
  39. Sugimoto, M. and W. Sakamoto, 1997. Putative phospholipid hydroperoxide glutathione peroxidase gene from Arabidopsis thaliana induced by oxidative stress. Genes Genet. Syst., 72: 311-316.
  40. Tiryakioglu, M., S. Eker, F. Ozkutlu, S. Husted and I. Cakmak, 2006. Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. J. Trace Elem. Med. Bio., 20: 181-189.
  41. Touiserkani, T., R. Haddad and J. Agric, 2012. Cadmium induced stress and antioxidative responses in different Brassica napus cultivars. J. Agric. Sci. Technol., 14: 929-937.
  42. Tukaj, Z., A. Bascik-Remisiewicz, T. Skowronski and C. Tukaj, 2007. Cadmium effect on the growth, photosynthesis, ultrastructure and phytochelatin content of green microalga Scenedesmus armatus: A study at low and elevated CO2 concentration. Environ. Exp. Bot., 60: 291-299.
  43. Velikova, V., I. Yordanov and A. Edreva, 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci., 151: 59-66.
  44. Wang, M.E. and Q.X. Zhou, 2006. Effect of herbicide chlorimuron-ethyl on physiological mechanisms in wheat (Triticum aestivum). Ecotox. Environ. Safe., 64: 190-197.
  45. Wu, F.B., G.P. Zhang and P. Dominy, 2003. Four barley genotypes respond differently to cadmium: Lipid peroxidation and activities of antioxidant capacity. Environ. Exp. Bot., 50: 67-78.
  46. Zhiqiang, X.U., Z. Qixing and L. Weitao, 2009. Joint effects of cadmium and lead on seedlings of four Chinese cabbage cultivars in northeastern China. J. Environ. Sci., 21: 1598-1606.
  47. Zhou, Q.X., F.X. Kong and L. Zhu, 2004. Ecotoxicology: Principles and Methods. Science Press, Beijing, China, pp: 161-217.

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2042-4876
ISSN (Print):   2042-4868
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved