Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Advance Journal of Food Science and Technology


Effects of Low-dose Microwave Radiation on Catalase and Lactate Dehydrogenase

1Hanying Huang, 1Shaowu Nie, 2Shanbai Xiong, 2Siming Zhao, 2Lijun Zhao and 2Jian Hu
1College of Engineering
2College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
Advance Journal of Food Science and Technology   2015  8:592-598
http://dx.doi.org/10.19026/ajfst.9.1971  |  © The Author(s) 2015
Received: ‎March ‎12, ‎2015   |  Accepted: March ‎24, ‎2015  |  Published: September 10, 2015

Abstract

The most frequent microbial contamination found in cereal were mainly caused by moulds which cell metabolic activities were closely related to catalase and lactate dehydrogenase. Here, we studied the effects of Low-Dose Microwave Radiation (LDMR; 2450 Hz, 2.4 W/g) on physicochemical characteristics of catalase and lactate dehydrogenase and compared them to the effects of conventional heating treatment (water bath), to provide a theoretical basis for using LDMR for moulds control in cereal. When catalase or lactate dehydrogenase was subjected to LDMR, the enzyme’s sulfydryl content, hydrophobic value and decreasing rate of enzyme activity were universally higher than when the enzyme was subjected to conductive heating. The activity of catalase and lactate dehydrogenase decreased with the rise in temperature. After LDMR exposure or heat conduction treatment, the secondary structure of catalase and lactate dehydrogenase were changed. Moreover, the heat inactivation temperature and conformation transition temperature of catalase were higher than those of lactate dehydrogenase.

Keywords:

Catalase, lactate dehydrogenase, microwave, mould,


References

  1. Alizadeh, P.N. and C. Li, 2000. Comparison of protein surface hydrophobicity measured at various pH values using three different fluorescent probes. J. Agr. Food Chem., 48(2): 328-334.
    CrossRef    PMid:10691636    
  2. Banik, S., S. Bandyopadhyay and S. Ganguly, 2003. Bioeffects of microwave-a brief review. Bioresource Technol., 87: 155-159.https://doi.org/10.1016/S0960-8524(02)00169-4
    CrossRef    
  3. Canumir, J.A., J.E. Celis, J.D. Bruijn and L.V. Vidal, 2002. Pasteurization of apple juice by using microwaves. Lebensm-Wiss. Technol., 35(5): 389-392.
    CrossRef    
  4. Cardamone, M. and N.K. Puri, 1992. Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochem. J., 282: 589-593.
    CrossRef    PMid:1546973 PMCid:PMC1130822    
  5. Chelikani, P., I. Fita and P.C. Loewen, 2004. Diversity of structures and properties among catalases. Cell. Mol. Life Sci., 61: 192-208.https://doi.org/10.1007/s00018-003-3206-5
    CrossRef    PMid:14745498    
  6. Chen, E.P., P.G. Soderberg, A.D. MacKerell Jr, B. Lindstrom and B.M. Tengroth, 1989. Inactivation of lactate dehydrogenase by UV radiation in the 300 nm wavelength region. Radiat. Environ. Bioph., 28: 185-191.
    CrossRef    PMid:2798769    
  7. Choi, S.I., K.H. Lim, L. Baik and B.L. Seong, 2011. Chaperoning roles of macromolecules interacting with proteins in vivo Int. J. Mol. Sci., 12: 1979-1990.
    CrossRef    PMid:21673934 PMCid:PMC3111645    
  8. Conkova, E., A. Laciakova, I. Styriak, L. Czerwiecki and G. Wilczynska, 2006. Fungal contamination and the levels of mycotoxins (DON and OTA) in cereal samples from Poland and east Slovakia. Czech J. Food Sci., 24(1): 33-40.
    CrossRef    
  9. Fang, Y.P., J. Hu, S.B. Xiong and S.M. Zhao, 2011. Effect of low-dose microwave radiation on Aspergillus parasiticus. Food Control, 22: 1078-1084.
    CrossRef    
  10. Fu, D.F., T. Zhou and K. Qian, 2003. Study on Microwave sterilization and its mechanism for biosolids. J. Microwave, 19(4): 70-72.
  11. Gedye, R.N., 1997. The question of non-thermal effects in the rate enhancement of organic reactions by microwaves. Microwaves Theor. Appl. Mater. Process., 4: 165-172.
  12. Giuliani, R., A. Bevilacqua, M.R. Corbo and C. Severini, 2010. Use of microwave processing to reduce the initial contamination by Alicyclobacillus acidoterrestris in a cream of asparagus and effect of the treatment on the lipid fraction. Innov. Food Sci. Emerg., 11: 328-334.
    CrossRef    
  13. Hashemnia, S., A.A. Moosavi-Movahedi, H. Ghourchian, F. Ahmad, G.H. Hakimelahi and A.A. Saboury, 2006. Diminishing of aggregation for bovine liver catalase through acidic residues modification. Int. J. Biol. Macromol., 40: 47-53.
    CrossRef    PMid:16828155    
  14. Jacobson, A.L. and H. Braun, 1977. Differential scanning calorimetry of the thermal denaturation of lactate dehydrogenase. BBA Protein Struct., 493(1): 142-153.
    CrossRef    
  15. Legrand, C., J.M. Bour, C. Jacob, J. Capiaumont, A. Martial, A. Marc, M. Wudtke, G. Kretzmer, C. Demangel, D. Duval and J. Hache, 1992. Lactate dehydrogenase (LDH) activity of the number of dead cells in the medium of cultured eukaryotic cells as marker. J. Biotechnol., 25(3): 231-243.
    CrossRef    
  16. Lu, H.H., J.C. Zhou, S.B. Xiong and S.M. Zhao, 2010. Effects of low-intensity microwave radiation on Tribolium castaneum physiological and biochemical characteristics and survival. J. Insect Physiol., 56: 1356-1361.
    CrossRef    PMid:20438733    
  17. Mervine, J. and R. Temple, 1997. Using a microwave oven to disinfect intermittent-use catheters. Rehabil. Nurs., 22(6): 318-320.
    CrossRef    PMid:9416193    
  18. Paolesse, R., A. Alimelli, E. Martinelli, C.D. Natale, A.D. Amico, M.G.D. Egidio, G. Aureli, A. Ricelli and C. Fanelli, 2006. Detection of fungal contamination of cereal grain samples by an electronic nose. Sensor Actuat. B-Chem., 119: 425-430.
    CrossRef    
  19. Risso, P.H., D.M. Borraccetti, C. Araujo, M.E. Hidalgo and C.A. Gatti, 2008. Effect of temperature and pH on the aggregation and the surface hydrophobicity of bovine ?-casein. Colloid Polym. Sci., 286: 1369-1378.
    CrossRef    
  20. Sasaki, K., Y. Mori, W. Honda and Y. Miyake, 1998. Selection of biological indicator for validating microwave heating sterilization. PDA J. Pharm. Sci. Tech., 52(2): 60-65.
  21. SAS Institute, 1989. SAS/STAT User's Guide. Version 6, 4th Edn., Vol. 2. SAS Institute, Cary, NC.
  22. Tetin, S.Y., F.G. Prendergast and S.Y. Venyaminov, 2003. Accuracy of protein secondary structure determination from circular dichroism spectra based on immunoglobulin examples. Anal. Biochem., 321(2): 183-187.
    CrossRef    
  23. Thannhauser, T.W., Y. Konishi and H.A. Scheraga, 1984. Sensitive quatitative analysis of disulfide bonds in polypeptides and proteins. Anal. Biochem., 138(1): 181-188.
    CrossRef    
  24. Vadivambal, R., D.S. Jayas and N.D.G. White, 2007. Wheat disinfestations using microwave energy. J. Stored Prod. Res., 43: 508-514.
    CrossRef    
  25. Velizarov, S., P. Raskmark and S. Kwee, 1999. The effects of radiofrequency fields on cell proliferation are non-thermal. Bioelectroch. Bioener., 48(1): 177-180.
    CrossRef    
  26. Yaghmaee, P. and T.D. Durance, 2005. Destruction and injury of Escherichia coil during microwave heating under vacuum. J. Appl. Microbiol., 98(2): 489-506.
    CrossRef    PMid:15659204    
  27. Zamocky, M. and F. Koller, 1999. Understanding the structure and function of catalases: Clues from molecular evolution and in vitro mutagenesis. Prog. Biophys. Mol. Bio., 72: 19-66.
    CrossRef    
  28. Zhao, S.M., X.L. Shao, S.B. Xing, C.G. Qiu and Y.L. Xu, 2007a. Effect of microwaves on rice quality. J. Stored Prod. Res., 43: 496-502.
    CrossRef    
  29. Zhao, S.M., S.B. Xiong, C.G. Qiu and X.X. Cheng, 2007b. A thermal lethal model of rice weevils subjected to microwave irradiation. J. Stored Prod. Res., 43: 430-434.
    CrossRef    
  30. Zielinski, M., S. Ciesielski, A.C. Kwiatkowska, J. Turek and Debowski, 2007. Influence of microwave radiation on bacterial community structure in biofilm. Process Biochem., 42: 1250-1253.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2042-4876
ISSN (Print):   2042-4868
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved