Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Advance Journal of Food Science and Technology


Multivariate Statistical Analysis Applied in Wine Quality Evaluation

1Jieling Zou, 2Yin Luo, 3Hui Zou, 4Qi Xiu and 3Junyan Tan
1College of Economics and Management,
2College of Information and Electrical Engineering,
3College of Science,
4College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
Advance Journal of Food Science and Technology   2015  3:177-182
http://dx.doi.org/10.19026/ajfst.9.1987  |  © The Author(s) 2015
Received: February ‎6, ‎2015  |  Accepted: March ‎1, ‎2015  |  Published: August 10, 2015

Abstract

This study applies multivariate statistical approaches to wine quality evaluation. With 27 red wine samples, four factors were identified out of 12 parameters by principal component analysis, explaining 89.06% of the total variance of data. As iterative weights calculated by the BP neural network revealed little difference from weights determined by information entropy method, the latter was chosen to measure the importance of indicators. Weighted cluster analysis performs well in classifying the sample group further into two sub-clusters. The second cluster of red wine samples, compared with its first, was lighter in color, tasted thinner and had fainter bouquet. Weighted TOPSIS method was used to evaluate the quality of wine in each sub-cluster. With scores obtained, each sub-cluster was divided into three grades. On the whole, the quality of lighter red wine was slightly better than the darker category. This study shows the necessity and usefulness of multivariate statistical techniques in both wine quality evaluation and parameter selection.

Keywords:

BP neural network, information entropy, principal component analysis, weighted cluster analysis, weighted TOPSIS method, wine quality evaluation,


References

  1. Adamczak, M., U.T. Bornscheuer and W. Bednarski, 2009. The application of biotechnological methods for the synthesis of biodiesel. Eur. J. Lipid Sci. Tech., 111(8): 800-813.
    CrossRef    
  2. Arai, S., K. Nakashima, T. Tanino, C. Ogino, A. Kondo and H. Fukuda, 2010. Production of biodiesel fuel from soybean oil catalyzed by fungus whole-cell biocatalysts in ionic liquids. Enzyme Microb. Tech., 46(1): 51-55.
    CrossRef    Direct Link
  3. Caballero, V., F.M. Bautista, J.M. Campelo, D. Luna, J.M. Marinas, A.A. Romero, J.M. Hidalgo, R. Luque, A. Macario and G. Giordano, 2009. Sustainable preparation of a novel glycerol-free biofuel by using pig pancreatic lipase: Partial 1,3-regiospecific alcoholysis of sunflower oil. Process Biochem., 44(3): 334-342.
    CrossRef    Direct Link
  4. Chen, M.L., Y. He, G.Q. He and H. Ruan, 2012. The preparation of a hyper-thermostable whole-cell biocatalyst and its application for biosynthesis of biodiesel. Adv. Mater. Res., 550-553: 1381-1386.
    CrossRef    
  5. Chen, M.L., Q. Guo, R.Z. Wang, J. Xu, C.W. Zhou, H. Ruan and G.Q. He, 2011. Construction of the yeast whole-cell Rhizopus oryzae lipase biocatalyst with high activity. J. Zhejiang Univ. Sci. B., 12(7): 545-551.
    CrossRef    PMid:21726061 PMCid:PMC3134842    
  6. Fishman, A. and U. Cogan, 2003. Bio-imprinting of lipases with fatty acids. J. Mol. Catal. B-Enzym., 22(3-4): 193-202.
    CrossRef    Direct Link
  7. Fukuda, H., S. Hama, S. Tamalampudi and H. Noda, 2008. Whole-cell biocatalysts for biodiesel fuel production. Trends Biotechnol., 26(12): 668-673.
    CrossRef    PMid:18976825    
  8. Gonzalez-Navarro, H. and L. Braco, 1997. Improving lipase activity in solvent-free media by interfacial activation-based molecular bioimprinting. J. Mol. Catal. B-Enzym., 3(1-4): 111-119.
    CrossRef    
  9. Gonzalez-Navarro, H. and L. Braco, 1998. Lipase-enhanced activity in flavour ester reactions by trapping enzyme conformers in the presence of interfaces. Biotechnol. Bioeng., 59(1): 122-127.
    CrossRef    
  10. Hama, S., S. Tamalampudi, T. Fukumizu, K. Miura, H. Yamaji, A. Kondo and H. Fukuda, 2006. Lipase localization in Rhizopus oryzae cells immobilized within biomass support particles for use as whole-cell biocatalysts in biodiesel-fuel production. J. Biosci. Bioeng., 101(4): 328-333.
    CrossRef    PMid:16716941    
  11. Hama, S., H. Yamaji, T. Fukumizu, T. Numata, S. Tamalampudi, A. Kondo, H. Noda and H. Fukuda, 2007. Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochem. Eng. J., 34(3): 273-278.
    CrossRef    
  12. Hama, S., A. Yoshida, K. Nakashima, H. Noda, H. Fukuda and A. Kondo, 2010. Surfactant-modified yeast whole-cell biocatalyst displaying lipase on cell surface for enzymatic production of structured lipids in organic media. Appl. Microbiol. Biot., 87(2): 537-543.
    CrossRef    PMid:20336291    
  13. Ikemura, T., 1985. Codon usage and tRNA content in unicellular and multicellular organisms. Mol. Biol. Evol., 2(1): 13-34.
    Direct Link
  14. Kaieda, M., T. Samukawa, T. Matsumoto, K. Ban, A. Kondo, Y. Shimada, H. Noda, F. Nomoto, K. Ohtsuka, E. Izumoto and H. Fukuda, 1999. Biodiesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solvent. J. Biosci. Bioeng., 88(6): 627-631.
    CrossRef    Direct Link
  15. Kato, M., J. Fuchimoto, T. Tanino, A. Kondo, H. Fukuda and M. Ueda, 2007. Preparation of a whole-cell biocatalyst of mutated Candida antaretica Lipase B (mCALB) by a yeast molecular display system and its practical properties. Appl. Microbiol. Biot., 75(3): 549-555.
    CrossRef    PMid:17262207    
  16. Kondo, A. and M. Ueda, 2004. Yeast cell-surface display-applications of molecular display. Appl. Microbiol. Biot., 64(1): 28-40.
    CrossRef    PMid:14716465    
  17. Lee, D.H., J.M. Kim, H.Y. Shin, S.W. Kang and S.W. Kim, 2006. Biodiesel production using a mixture of immobilized Rhizopus oryzae and Candida rugosa lipases. Biotechnol. Bioproc. E., 11(6): 522-525.
    CrossRef    
  18. Lithwick, G. and H. Margalit, 2003. Hierarchy of sequence-dependent features associated with prokaryotic translation. Genome Res., 13(12): 2665-2673.
    CrossRef    PMid:14656971 PMCid:PMC403808    
  19. Matsumoto, T., S. Takahashi, M. Kaieda, M. Ueda, A. Tanaka, H. Fukuda and A. Kondo, 2001. Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production. Appl. Microbiol. Biot., 57(4): 515-520.
    CrossRef    PMid:11762598    
  20. Mingarro, I., C. Abad and L. Braco, 1995. Interfacial activation-based molecular bioimprinting of lipolytic enzymes. P. Natl. Acad. Sci. USA, 92(8): 3308-3312.
    CrossRef    PMid:7724558 PMCid:PMC42155    
  21. Oda, M., M. Kaieda, S. Hama, H. Yamaji, A. Kondo, E. Izumoto and H. Fukuda, 2005. Facilitatory effect of immobilized lipase-producing Rhizopus oryzae cells on acyl migration in biodiesel-fuel production. Biochem. Eng. J., 23(1): 45-51.
    CrossRef    
  22. Prim, N., A. Blanco, J. Martinez, F.I.J. Pastor and P. Diaz, 2000. estA, a gene coding for a cell-bound esterase from Paenibacillus sp. BP-23, is a new member of the bacterial subclass of type B carboxylesterases. Res. Microbiol., 151(4): 303-312.
    CrossRef    Direct Link
  23. Shiraga, S., M. Kawakami and M. Ueda, 2004. Construction of combinatorial library of starch-binding domain of Rhizopus oryzae glucoamylase and screening of clones with enhanced activity by yeast display method. J. Mol. Catal. B-Enzym., 28(4-6): 229-234.
    CrossRef    Direct Link
  24. Tamalampudi, S., M.R. Talukder, S. Hama, T. Numata, A. Kondo and H. Fukuda, 2008. Enzymatic production of biodiesel from Jatropha oil: A comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochem. Eng. J., 39(1): 185-189.
    CrossRef    
  25. Yan, J.Y., Y.J. Yan, J.K. Yang, L. Xu and Y. Liu, 2009. Combined strategy for preparation of a bioimprinted Geotrichum sp. lipase biocatalyst effective in non-aqueous media. Process Biochem., 44(10): 1128-1132.
    CrossRef    
  26. Yilmaz, E., 2002. Improving the application of microbial lipase by bio-imprinting at substrate-interfaces. World J. Microb. Biot., 18(1): 37-40.
    CrossRef    
  27. Zou, J.T., V. Katavic, E.M. Giblin, D.L. Barton, S.L. MacKenzie, W.A. Keller, X. Hu and D.C. Taylor, 1997. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell., 9(6): 909-923.
    CrossRef    PMid:9212466 PMCid:PMC156967    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2042-4876
ISSN (Print):   2042-4868
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved