Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Asian Journal of Medical Science


A Case Study Analysis of EEG Signals under Conditions of Cognition

1Kalpana, R., 2M. Chitra and 3G. Ratna Sagari
1Research Scholar, Anna University Chennai,
2Department of Information Technology, Sona College of Technology, Salem, India
3Department of Medical Electronics, BMS College of Engineering, Bangalore, India
Asian Journal of Medical Science  2015  4:41-49
http://dx.doi.org/10.19026/ajms.7.1685  |  © The Author(s) 2015
Received: May ‎30, ‎2015  |  Accepted: July ‎30, ‎2015  |  Published: October 25, 2015

Abstract

Since Electro Encephalo Graphic (EEG) signal is considered chaotic, Nonlinear Dynamics and Deterministic Chaos theory may supply effective descriptors of the dynamics and underlying chaos in the brain. The EEG signals are highly subjective and the information about the various states may appear at random in the time scale. Therefore, EEG signal parameters, extracted and analyzed using computers, are highly useful. This study was undertaken to evaluate the linear and nonlinear parameters such as Approximate Entropy (ApEn), Correlation Dimension (D2), Pearson Autocorrelation, Bi-correlation, Hurst exponent and phase space plots from the EEG signals under different cognitive states.

Keywords:

Cognition, Electroencephalograph (EEG), linear features (properties), non-linear features (properties),


References

  1. Alexey, M., 2008. Calculation of EEG correlation dimension: Large massifs of experimental data. J. Comp. Methods Programs Biomed., 92(1): 154-160.
    CrossRef    PMid:18667257    
  2. Babloyantz, A., J.M. Salazar and C. Nicolis, 1985. Evidence of chaotic dynamics ofbrain activity during the sleep cycle. Phys. Lett. A, 111A: 152-156.
    CrossRef    
  3. Box, G.E.P., G.M. Jenkins and G.C. Reinsel, 1994. Time Series Analysis: Forecasting and Control. 3rd Edn., Prentice-Hall, New Jersey.
    PMCid:PMC2540931    
  4. Chon, K., C.G. Scully and S. Lu, 2009. Approximate entropy for all signals. IEEE Eng. Med. Biol. Mag., 28: 18-23.
    CrossRef    PMid:19914883    
  5. Dangel, S., P.F. Meier, H.R. Moser, S. Plibersek and Y. Shen, 1999. Time seriesanalysis of sleep EEG. Comp. Assist. Phys., 93-95.
  6. Ferri, R., L. Parrino, A. Smerieri, M.G. Terzano, M. Elia, S.A. Musumeci, S. Pettinato and C.J. Stam, 2002. Nonlinear EEG measures during sleep: Effects of the different sleep stages and cyclic alternating pattern. Int. J. Psychophys., 43: 273-286.
    CrossRef    
  7. Flores Vega, C.H., J. Noel and J.R. Fernández, 2013. Cognitive task discrimination using approximate entropy (ApEn) on EEG signals. Proceeding of the Biosignals and Biorobotics Conference (BRC), ISSNIP, (Rio de Janerio, pp: 1-4.
  8. Fraser, A.M. and H.L. Swinney, 1986. Independent coordinates forstrange attractors from mutual information. Phys. Rev. A, 33: 1134-1140.
    CrossRef    
  9. Grassberger, P. and I. Procaccia, 1983. Characterization of strange attractors. Phys. Rev. Lett., 50: 346-349.
    CrossRef    
  10. Hinich, M.J., 1996. Testing for dependence in the input to a linear time series model. J. Nonparam. Stat., 6: 205-221.
    CrossRef    
  11. Hoyer, D., K. Schmidt, R. Bauer, U. Zwiener, M. Kohler et al., 1997. Nonlinear analysis of heart rate and respiratory dynamics. IEEE Eng. Med. Biol. Mag., 16(1): 31-39.
    CrossRef    PMid:9058580    
  12. Jaeseung, J., C. Jeong-Ho, S.Y. Kim and H. Seol-Heui, 2001. Nonlinear dynamicalanalysis of the EEG in patients with Alzheimer's disease andvascular dementia. Clin Neurophys., 18(1): 58-67.
    CrossRef    
  13. Kennel, M.B., R. Brown and H.D.I. Abarbanel, 1992. Determining embeddingdimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A, 45: 3403-3411.
    CrossRef    PMid:9907388    
  14. Korn, H. and P. Faure, 2003. Is there chaos in the brain? II.Experimental evidence and related models. C. R. Biol., 326(9): 787-840.
    CrossRef    PMid:14694754    
  15. Kugiumtzis, D., 2001. On the reliability of the surrogate data test for nonlinearity in the analysis of noisy time series. Int. J. Bifurc. Chaos, 11(7): 1881-1896.
    CrossRef    
  16. Lake, D., J. Richman, M. Griffin and J. Moorman, 2002. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Physiol., 283: 789-797.
    CrossRef    PMid:12185014    
  17. Lamberts, J., P.L.C. Van den Broek, J. Bener, J. Van Egmond, R. Dirksen and A.M.L. Cohen, 2000. Correlation dimension of the human electroencephalogram corresponding to cognitive load. Neuropsychobiology, 41(3): 149-153.
    CrossRef    PMid:10754429    
  18. Liebert, W. and H.G. Schuster, 1989. Proper choice of the time delayfor analysis of chaotic time series. Phys. Lett. A, 142(2-3): 107-111.
    CrossRef    
  19. Lindenberg, A.M., 1996. The evolution of complexity in human brain development: An EEG study. Electroencephalogr. Clin. Neurophysiol., 99(5): 405-411.
    CrossRef    
  20. Lu, S., X. Chen, J. Kanters, I.C. Solomon and K.H. Chon, 2008. Automatic selection of the threshold value R for approximate entropy. IEEE Trans. Biomed. Eng., 55: 1966-1972.
    CrossRef    PMid:18632359    
  21. McCarthy, R.A. and E.K. Warrington, 1990. Cognitive Neuropsychology: A Clinical Introduction. Academic Press, San Diego, LA.
  22. Molle, M., L. Marshall, B. Wolf, H.L. Fehm and J. Born, 1999. EEG complexity and performance measures of creative thinking. Psychophysiology, 36(1): 95-104.
    CrossRef    PMid:10098384    
  23. Natarajan, K., R. Acharya, F. Alias, T. Tiboleng and S.K. Puthusserypady, 2004. Nonlinear analysis of EEGsignals at different mental states. Bio. Med. Eng., 3: 1-11.
  24. Pincus, S.M., 1991. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci., 88: 2297-2301.
    CrossRef    PMid:11607165 PMCid:PMC51218    
  25. Pincus, S.M. and A.L. Goldberger, 1994. Physiological time-series analysis: What does regularity quantify? Am. J. Physiol., 266: H1643-H1656.
    PMid:8184944    
  26. Pincus, S., 2001. Assessing serial irregularity and its implications for health. Ann. NY Acad. Sci., 954: 245-267.
    CrossRef    PMid:11797860    
  27. Pijn, J.P., D.N. Velis, M.J. van der Heyden, J. DeGoede, C.W. van Veelen and F.H. Lopes da Silva, 1997. Nonlinear dynamics ofepileptic seizures onbasis of intracranial EEG recordings. Brain Topogr., 9: 249-270.
    CrossRef    PMid:9217984    
  28. Sprott, J.C. and G. Rowlands, 2001. Improved correlation dimensioncalculation. Int. J. Bifurc. Chaos, 11: 1865-1880.
    CrossRef    
  29. Schreiber, T. and A. Schmitz, 1997. Discrimination power of measures for nonlinearity in a time series. Phys. Rev. E, 55(5): 5443-5447.
    CrossRef    
  30. Skarda, C.A. and W.J. Freeman, 1987. How brains make chaos in order to make sense of theworld. Behav. Brain Sci., 10: 161-195.
    CrossRef    
  31. Stein, K.M., N. Lippman and P. Kligfield, 1992. Fractal rhythms of the heart. J. Electrocardiol., 24: 72-76.
    CrossRef    
  32. Stephen, H.K., 1994. In the Wake of Chaos: Unpredictable Order in Dynamical Systems. University of Chicago Press, Chicago, ISBN: 0226429822, pp: 190.
  33. Theiler, J., 1986. Spurious dimension from correlation algorithms applied to limited time series data. Phys. Rev. A, 34(3): 2427-2432.
    CrossRef    
  34. Theiler, J., 1987. Efficient algorithm for estimating the correlation dimension from a set of discrete point. Phys. Rev. A, 36(9): 4456-4462.
    CrossRef    
  35. Ulbikas, J. and A. Cenys, 1994. Nonlinear Dynamics Methods in EEG Investigations: Advances in Synergetics. Belarusian State University Press, Minsk, pp: 110-120.
  36. West, B.J., 2013. Fractal Physiology and Chaos in Medicine. World Scientific, Singapore, London, ISBN: 9814417793, pp: 332.
    CrossRef    
  37. Wang, X., J. Meng, G. Tan and L. Zou, 2010. Research on the relation of EEG signal chaos characteristics with high-level intelligence activity of human brain. Nonlinear Biomedical Physics, doi: 10.1186/1753-4631-4-2.
    CrossRef    
  38. Wright, J.J. and D.T.J. Liley, 1996. Dynamics of the brain at global and microscopic scales: Neural networks and the EEG. Behav. Brain Sci., 19: 285-320.
    CrossRef    
  39. Yentes, J.M., N. Hunt, K.K. Schmid, J.P. Kaipust, D. McGrath et al., 2012. The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng., 41(2): 349-65.
    CrossRef    PMid:23064819    
  40. Zhou, W., L. Zhong and H. Zhao, 2005. Feature extraction and classification of mental EEG using approximate entropy. Proceedings of the 27th Annual Conference IEEE Engineering in Medicine and Biology Society, Shanghai, pp: 5975-5978.
    PMid:17281622     

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-8773
ISSN (Print):   2040-8765
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved