Research Article | OPEN ACCESS
A Case Study Analysis of EEG Signals under Conditions of Cognition
1Kalpana, R., 2M. Chitra and 3G. Ratna Sagari
1Research Scholar, Anna University Chennai,
2Department of Information Technology, Sona College of Technology, Salem, India
3Department of Medical Electronics, BMS College of Engineering, Bangalore, India
Asian Journal of Medical Science 2015 4:41-49
Received: May 30, 2015 | Accepted: July 30, 2015 | Published: October 25, 2015
Abstract
Since Electro Encephalo Graphic (EEG) signal is considered chaotic, Nonlinear Dynamics and Deterministic Chaos theory may supply effective descriptors of the dynamics and underlying chaos in the brain. The EEG signals are highly subjective and the information about the various states may appear at random in the time scale. Therefore, EEG signal parameters, extracted and analyzed using computers, are highly useful. This study was undertaken to evaluate the linear and nonlinear parameters such as Approximate Entropy (ApEn), Correlation Dimension (D2), Pearson Autocorrelation, Bi-correlation, Hurst exponent and phase space plots from the EEG signals under different cognitive states.
Keywords:
Cognition, Electroencephalograph (EEG), linear features (properties), non-linear features (properties),
References
-
Alexey, M., 2008. Calculation of EEG correlation dimension: Large massifs of experimental data. J. Comp. Methods Programs Biomed., 92(1): 154-160.
CrossRef PMid:18667257 -
Babloyantz, A., J.M. Salazar and C. Nicolis, 1985. Evidence of chaotic dynamics ofbrain activity during the sleep cycle. Phys. Lett. A, 111A: 152-156.
CrossRef -
Box, G.E.P., G.M. Jenkins and G.C. Reinsel, 1994. Time Series Analysis: Forecasting and Control. 3rd Edn., Prentice-Hall, New Jersey.
PMCid:PMC2540931 -
Chon, K., C.G. Scully and S. Lu, 2009. Approximate entropy for all signals. IEEE Eng. Med. Biol. Mag., 28: 18-23.
CrossRef PMid:19914883 -
Dangel, S., P.F. Meier, H.R. Moser, S. Plibersek and Y. Shen, 1999. Time seriesanalysis of sleep EEG. Comp. Assist. Phys., 93-95.
-
Ferri, R., L. Parrino, A. Smerieri, M.G. Terzano, M. Elia, S.A. Musumeci, S. Pettinato and C.J. Stam, 2002. Nonlinear EEG measures during sleep: Effects of the different sleep stages and cyclic alternating pattern. Int. J. Psychophys., 43: 273-286.
CrossRef -
Flores Vega, C.H., J. Noel and J.R. Fernández, 2013. Cognitive task discrimination using approximate entropy (ApEn) on EEG signals. Proceeding of the Biosignals and Biorobotics Conference (BRC), ISSNIP, (Rio de Janerio, pp: 1-4.
-
Fraser, A.M. and H.L. Swinney, 1986. Independent coordinates forstrange attractors from mutual information. Phys. Rev. A, 33: 1134-1140.
CrossRef -
Grassberger, P. and I. Procaccia, 1983. Characterization of strange attractors. Phys. Rev. Lett., 50: 346-349.
CrossRef -
Hinich, M.J., 1996. Testing for dependence in the input to a linear time series model. J. Nonparam. Stat., 6: 205-221.
CrossRef -
Hoyer, D., K. Schmidt, R. Bauer, U. Zwiener, M. Kohler et al., 1997. Nonlinear analysis of heart rate and respiratory dynamics. IEEE Eng. Med. Biol. Mag., 16(1): 31-39.
CrossRef PMid:9058580 -
Jaeseung, J., C. Jeong-Ho, S.Y. Kim and H. Seol-Heui, 2001. Nonlinear dynamicalanalysis of the EEG in patients with Alzheimer's disease andvascular dementia. Clin Neurophys., 18(1): 58-67.
CrossRef -
Kennel, M.B., R. Brown and H.D.I. Abarbanel, 1992. Determining embeddingdimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A, 45: 3403-3411.
CrossRef PMid:9907388 -
Korn, H. and P. Faure, 2003. Is there chaos in the brain? II.Experimental evidence and related models. C. R. Biol., 326(9): 787-840.
CrossRef PMid:14694754 -
Kugiumtzis, D., 2001. On the reliability of the surrogate data test for nonlinearity in the analysis of noisy time series. Int. J. Bifurc. Chaos, 11(7): 1881-1896.
CrossRef -
Lake, D., J. Richman, M. Griffin and J. Moorman, 2002. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Physiol., 283: 789-797.
CrossRef PMid:12185014 -
Lamberts, J., P.L.C. Van den Broek, J. Bener, J. Van Egmond, R. Dirksen and A.M.L. Cohen, 2000. Correlation dimension of the human electroencephalogram corresponding to cognitive load. Neuropsychobiology, 41(3): 149-153.
CrossRef PMid:10754429 -
Liebert, W. and H.G. Schuster, 1989. Proper choice of the time delayfor analysis of chaotic time series. Phys. Lett. A, 142(2-3): 107-111.
CrossRef -
Lindenberg, A.M., 1996. The evolution of complexity in human brain development: An EEG study. Electroencephalogr. Clin. Neurophysiol., 99(5): 405-411.
CrossRef -
Lu, S., X. Chen, J. Kanters, I.C. Solomon and K.H. Chon, 2008. Automatic selection of the threshold value R for approximate entropy. IEEE Trans. Biomed. Eng., 55: 1966-1972.
CrossRef PMid:18632359 -
McCarthy, R.A. and E.K. Warrington, 1990. Cognitive Neuropsychology: A Clinical Introduction. Academic Press, San Diego, LA.
-
Molle, M., L. Marshall, B. Wolf, H.L. Fehm and J. Born, 1999. EEG complexity and performance measures of creative thinking. Psychophysiology, 36(1): 95-104.
CrossRef PMid:10098384 -
Natarajan, K., R. Acharya, F. Alias, T. Tiboleng and S.K. Puthusserypady, 2004. Nonlinear analysis of EEGsignals at different mental states. Bio. Med. Eng., 3: 1-11.
-
Pincus, S.M., 1991. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci., 88: 2297-2301.
CrossRef PMid:11607165 PMCid:PMC51218 -
Pincus, S.M. and A.L. Goldberger, 1994. Physiological time-series analysis: What does regularity quantify? Am. J. Physiol., 266: H1643-H1656.
PMid:8184944 -
Pincus, S., 2001. Assessing serial irregularity and its implications for health. Ann. NY Acad. Sci., 954: 245-267.
CrossRef PMid:11797860 -
Pijn, J.P., D.N. Velis, M.J. van der Heyden, J. DeGoede, C.W. van Veelen and F.H. Lopes da Silva, 1997. Nonlinear dynamics ofepileptic seizures onbasis of intracranial EEG recordings. Brain Topogr., 9: 249-270.
CrossRef PMid:9217984 -
Sprott, J.C. and G. Rowlands, 2001. Improved correlation dimensioncalculation. Int. J. Bifurc. Chaos, 11: 1865-1880.
CrossRef -
Schreiber, T. and A. Schmitz, 1997. Discrimination power of measures for nonlinearity in a time series. Phys. Rev. E, 55(5): 5443-5447.
CrossRef -
Skarda, C.A. and W.J. Freeman, 1987. How brains make chaos in order to make sense of theworld. Behav. Brain Sci., 10: 161-195.
CrossRef -
Stein, K.M., N. Lippman and P. Kligfield, 1992. Fractal rhythms of the heart. J. Electrocardiol., 24: 72-76.
CrossRef -
Stephen, H.K., 1994. In the Wake of Chaos: Unpredictable Order in Dynamical Systems. University of Chicago Press, Chicago, ISBN: 0226429822, pp: 190.
-
Theiler, J., 1986. Spurious dimension from correlation algorithms applied to limited time series data. Phys. Rev. A, 34(3): 2427-2432.
CrossRef -
Theiler, J., 1987. Efficient algorithm for estimating the correlation dimension from a set of discrete point. Phys. Rev. A, 36(9): 4456-4462.
CrossRef -
Ulbikas, J. and A. Cenys, 1994. Nonlinear Dynamics Methods in EEG Investigations: Advances in Synergetics. Belarusian State University Press, Minsk, pp: 110-120.
-
West, B.J., 2013. Fractal Physiology and Chaos in Medicine. World Scientific, Singapore, London, ISBN: 9814417793, pp: 332.
CrossRef -
Wang, X., J. Meng, G. Tan and L. Zou, 2010. Research on the relation of EEG signal chaos characteristics with high-level intelligence activity of human brain. Nonlinear Biomedical Physics, doi: 10.1186/1753-4631-4-2.
CrossRef -
Wright, J.J. and D.T.J. Liley, 1996. Dynamics of the brain at global and microscopic scales: Neural networks and the EEG. Behav. Brain Sci., 19: 285-320.
CrossRef -
Yentes, J.M., N. Hunt, K.K. Schmid, J.P. Kaipust, D. McGrath et al., 2012. The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng., 41(2): 349-65.
CrossRef PMid:23064819 -
Zhou, W., L. Zhong and H. Zhao, 2005. Feature extraction and classification of mental EEG using approximate entropy. Proceedings of the 27th Annual Conference IEEE Engineering in Medicine and Biology Society, Shanghai, pp: 5975-5978.
PMid:17281622
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-8773
ISSN (Print): 2040-8765 |
|
Information |
|
|
|
Sales & Services |
|
|
|