Research Article | OPEN ACCESS
Oxidative Stress, Antioxidant Status and DNA Damage in a Mercury Exposure Workers
Hasan F. Al-azzawie, Akram Umran and Nadhem H. Hyader
Department of Biotechnology, College of Science, University of Baghdad, Iraq
British Journal of Pharmacology and Toxicology 2013 3:80-88
Received: December 17, 2012 | Accepted: February 01, 2013 | Published: June 25, 2013
Abstract
The present study was designed to evaluate changes in peripheral markers of oxidative stress, oxidative DNA damage and some biochemical markers during chronic HgCl2 intoxication and to examine how the workers respond chronically to this pollutant. Fifty (50) fasting male workers, age range 28-61 years exposed to mercury in a chloroalkali factory at Al-Furat company in Babylon governorate, range duration period 5-18 years and 30 controls matched for age, diet and other demographic characteristics except exposure to chemicals were selected. Lipid peroxidation marker Malondialdehyde (MDA), antioxidant status markers enzymatic Superoxide Dismutase (SOD), Glutathione Peroxidase (GPx), non enzymatic antioxidant markers, Glutathione (GSH), vitamin C, vitamin E and oxidative DNA damage by comet assay were determined. Blood Mercury levels were significantly higher in the workers G2 and G3 groups compared with controls group G1 (p<0.01). MDA levels were also significantly increased and positively correlated with the concentration of Hg in group 3 (r = 0.76, p<0.01), probably to match the body chemical burden, while levels of non enzymatic antioxidant GSH, vitamin C, E and enzymatic antioxidant SOD and GPx were in contrast significantly lower in both workers than in controls (p<0.01). The present study indicates that workers occupationally exposed to mercury, in the particular conditions of exposure of this collective evaluated, show clear evidence of genotoxic activity in their lymphocytes especially in G3 than G2 against healthy control group G1 and this genotoxic activity (DNA damage by comet assay) is correlated positively with the long period of exposure to mercury pollution. DNA damage in mercury-exposed individuals suggests that mercury overload induces an imbalance in the redox cycle.
Keywords:
DNA damage, inorganic mercury, oxidative stress biomarkers,
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2044-2467
ISSN (Print): 2044-2459 |
|
Information |
|
|
|
Sales & Services |
|
|
|