Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     British Journal of Pharmacology and Toxicology


Investigation of Traditional Palestinian Medicinal Plant Inula viscose as Potential Anti-malarial Agent

1M. Akkawi, 1I. Abbasi, 1S. Jaber, 1Q. Aburemeleh, 2A. Naseredin and 3Pierre Lutgen
1Department of Life Sciences, College of Science and Technology
2Nutrition and Health Research Institute, Faculty of Medicine, Al-Quds University, West Bank, Palestine
3IFBV-BELHERB, Luxembourg
British Journal of Pharmacology and Toxicology  2014  5:153-159
http://dx.doi.org/10.19026/bjpt.5.5181  |  © The Author(s) 2014
Received: January 27, 2014  |  Accepted: February 10, 2014  |  Published: October 20, 2014

Abstract

Malaria is a life threatening parasitic disease which is prevalent mainly in developing countries; it is the main cause of global mortality and morbidity. Development and search of novel and effective anti-malarial agents to overcome chloroquine resistance have become a very important issue. Most anti-malarial drugs target the erythrocytic stage of malaria infection, where hemozoin synthesis takes place and is considered a crucial process for the parasite survival. Throughout last decades, natural products have been a significant source of chemotherapeutics especially against malaria. Inula viscose, is a shrub that grows around the Mediterranean basin and considered as an important Palestinian traditional medicinal herb. In this research it was found that the Palestinian flora Inula viscose alcoholic extract has a significant and promising anti-malarial effect in both in vitro and in vivo systems. The crude alcoholic extract of Inula viscose has the capability to impede the formation of &beta-hematin in-vitro; with an efficiency of about 93% when compared to the standard chloroquine which gave 94% at comparable concentrations. In vivo studies showed that this crude extract inhibited the growth of Plasmodium parasites in the red blood cells at a rate of about 96.6%, with an EC50 value of 0.55 ng/mL. Several secondary plant metabolites may be responsible for this anti-malarial activity; the effect also may be most probably due to the presence of high concentrations of nerolidol which has often been found at high concentrationsin this plant. Nerolidol shows a stronger inhibition of hypoxanthine incorporation than quinine. Its anti-malarial effect is potentiated by other essential oils. Nerolidol is also found in several Artemisia species and in Cymbopogon citrates (lemongrass) and Virola surinamensis, all plants known for their anti-malarial properties.

Keywords:

&beta-hematin, anti-malarial drug resistance, anti-malarial drugs, chloroquine, ferriprotoporphyrin (IX), hemozoin, Inula viscose,


References

  1. Abu Zarga, M.H., E.M. Hamed, S.S. Sabri, W. Voelter and Z. Klaus-Peter, 1998. New sesquiterpenoids from the Jordanian medicinal plant Inula viscosa. J. Nat. Prod., 61: 798-800.
    CrossRef    PMid:9644068    
  2. Akkawi, M., A. Aljazzar, M. Abul Haj and Q. Abu- Remeleh, 2012a. The effect of Cis-2-(1H-imidazole- 2-yl)-1H-imidazole dichloro platinum (II) on the in-vitro formation of ß-Hematin. Brit. J. Pharmacol. Toxicol., 3(2): 65-69.
  3. Akkawi, M., A.K. Sharif, K. Salem, A. Saleh and Q. AbuRemeleh, 2012b. Wild sage (Salvia officinalis) as a potential anti-malarial drug. Malaria J., 11(Suppl. 1): 3.
    CrossRef    PMCid:PMC3472673    
  4. Bannister, L.H. and I.W. Sherman, 2009. Plasmodium. Encyclopedia of Life Sciences (ELS). John Wiley and Sons Ltd., Chichester.
  5. Blauer, G. and M. Akkawi, 1997. Investigations of B- and ß-hematin. J. Inorg. Biochem., 66: 145-152.
    CrossRef    
  6. Blauer, G. and M. Akkawi, 2000. On the preparation of ß-Hematin. Biochem. J., 346: 249-250.
    CrossRef    PMid:10677340 PMCid:PMC1220847    
  7. Bohlmann, F., P.K. Mahanta, J. Jakupovic, R.C. Rastogi and A.A. Natu, 1978. New sesquiterpene lactones from inula species. Phytochemistry, 17(7): 1165-1172.
    CrossRef    
  8. Bowden, M.E., M.B. Grow and T. Sullivan, 2003. Pharmaceutical achievers: The human face for pharmacuitical research. 2-4 USA. Retrieved from: www.amazon.com › ... › Professionals & Academics › Scientists?.
  9. Danino, O., H.E. Gottlieb, S. Grossman and M. Bergman, 2009. Antioxidant activity of 1,3-dicaffeoylquinic acid isolated from Inula viscosa. Food Res. Int., 42: 1273-1280.
    CrossRef    
  10. Deharo, E., R. Garcia, P. Oporto, A. Gimenez, M. Sauvian, V. Jullian and H. Ginsburg, 2002. A non-radiolabelled ferriprotoporphyrin IX biomineralisation inhibition test for the high throughput screening of anti-malarial compounds. Exp. Parasitol., 100: 252-256.
    CrossRef    
  11. Dondorp, A., F. Nosten, P. Yi, D. Das, A. Phae Phyo, J. Tarning, K. Lwin, F. Ariey, W. Hanpithakpong, W. Lee, P. Ringwald, K. Silamut, M. Imwong, K. Chotivanich, P. Lim, T. Herdman, S. Sam An, S. Yeung, P. Singhasivanon, N. Day, N. Lindegardh, D. Socheat and N. White, 2009. Artemisinin resistance in Plasmodium falciparum malaria. New Engl. J. Med., 361: 455-467.
    CrossRef    PMid:19641202 PMCid:PMC3495232    
  12. Egan, T.J., J.M. Combrinck, J. Egan, G.R. Hearne, H.M. Marques, S.N. Tenteni, B.T. Sewells, P.J. Smith, D. Taylor, D.A. Vanschalkwyk and J.C. Walden, 2002. Fate of haem iron in the malaria parasite Plasmodium falciparum. Biochem. J., 365: 343-347.
    CrossRef    PMid:12033986 PMCid:PMC1222701    
  13. Fontana, G., S. La Rocca, S. Passannanti and M.P. Paternostro, 2007. Sesquiterpene compounds from Inula viscosa. Nat. Prod. Res., 21(9): 824-7.
    CrossRef    PMid:17654288    
  14. Goldberg, D., A. Slater, A. Cerami and G. Henderson, 1990. Hemoglobin degradation in the malaria parasite Plasmodium falciparum: An ordered process in a unique organelle. P. Natl. Acad. Sci. USA, 87: 931-935.
    CrossRef    
  15. Grande, M., F. Piera, A. Cuenca, P. Torres and I.S. Bellido,1985. Flavonoids from Inula viscosa. Planta Med., 51(5): 414-419.
    CrossRef    PMid:17342599    
  16. Hawley, S.R., P.G. Bray, M. Munthin, J.D. Atkinson, P.M. O'neill and S.A. Ward, 1998. Relationship between anti-malarial drug activity, accumulation and inhibition of heme polymerization in Plasmodium falciparum in Vitro. Antimicrob. Agents Ch., 42(3): 682-686.
  17. Jaber, S., S. Abu-Lafi, A. Asharif, M. Qutob, Q. Aburemeleh and M. Akkawi, 2013. Potential anti-malarial activity from alcoholic extracts of wild Salvia palaestina leaves. Brit. J. Pharm. Toxicol., 4(5): 201-206.
  18. Kanan, G.J. and R.A. Al-Najar, 2008. In vitro antifungal activities of various plant crude extracts and fractions against citrus post-harvest disease agent Penicillium digitatum. Jordan J. Biol. Sci., 1: 89-99.
  19. Kenmogne, M., E. Prost, D. Harakat, M.J. Jacquier, M. Frederich, L.B. Sondengam, M. Zeches and P. Waffo-Teguo, 2006. Five labdane diterpenoids from the seeds of Aframomum zambesiacum. Phytochemistry, 67(5): 433-8.
    CrossRef    PMid:16321410    
  20. Klemba, M., W. Beatty, I. Gluzman and D. Goldberg, 2004. Trafficking of plasmepsin II to the food vacuole of the malaria parasite Plasmodium falciparum. J. Cell Biol., 164: 47-56.
    CrossRef    PMid:14709539 PMCid:PMC2171955    
  21. Klones, N., O. Tan, K. Jackson, D. Goldberg, M. Klemba and L. Tille, 2007. Evaluation of pH during cytostomal endocytosis and vacuolar catabolism of haemoglobin in Plasmodium falciparum. Biochem. J., 407: 343-354.
    CrossRef    PMid:17696875 PMCid:PMC2275073    
  22. Liu, J., I. Gluzman, M.E. Drew and D.E. Goldberg, 2005. The role of Plasmodium falciparum food vacuole plasmepsins. J. Biol. Chem., 280: 1432-1437.
    CrossRef    PMid:15513918    
  23. Má-ez, S., M.C. Recio, I. Gil, C. Gómez, R.M. Giner, P.G. Waterman and J.L. Ríos, 1999. A glycosyl analogue of diacylglycerol and other anti-inflammatory constituents from Inula viscosa. J. Nat. Prod., 62(4): 601-604.
    CrossRef    PMid:10217718    
  24. Orjih, A.U. and C.D. Fitch, 1993. Hemozoin production by Plasmodium falciparum: Variation with strain and exposure to chloroquine. Biochim. Biophys. Acta, 1157: 270-274.
    CrossRef    
  25. Pagola, S., P.W. Stephens, D.S. Bohle, A.D. Kosar and S.K. Madsen, 2000. The structure of malaria pigment ß-Haematin. Nature, 404: 307-310.
    CrossRef    PMid:10749217    
  26. Salazar, E., E.M. Bank, N. Ramsey, K.C. Hess, K.W. Deitsch, L.R. Levin and J. Buck, 2012. Characterization of padenylyl cyclase-beta and its role in erythrocytic stage parasites. PLoS One, 7: e39769.
    CrossRef    PMid:22761895 PMCid:PMC3383692    
  27. Saxona, S., N. Pant, D.C. Jain and R.S. Bhakuni, 2003. Anti-malarial agents from plant sources. Curr. Sci. India, 85(9): 1314-1330.
  28. Scalbert, A., I.T. Johnson and M. Saltmarsh, 2005. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr., 81: 215S-217S.
    CrossRef    PMid:15640483    
  29. Schinella, G.R., H.A. Tournier, J.M. Prieto, P. Mordujovich de Buschiazzo and J.L. Ríos, 2002. Antioxidant activity of anti-inflammatory plant extracts. Life Sci., 70: 1023-1033.
    CrossRef    
  30. Seatlholo, S.T., 2007. The biological activity of essential oil constituents. Thesis, University of Witwatersrand, Johannesburg.
  31. Shohaib, T., M. Shafique, N. Dhanya and M.C. Divakar, 2011. Importance of flavonoids in therapeutics. Hygeia: J. D. Med., 3(1): 1-18.
  32. Slater, G.A., W.J. Swiggard, B.R. Orton, W.D. Flitter, D.E. Goldberg, A. Cerami and G.B. Henderson, 1991. An iron-carboxylate bond links the heme units of malaria pigments. P. Natl. Acad. Sci. USA, 88(2): 325-329.
    CrossRef    PMid:1988933 PMCid:PMC50803    
  33. Spiller, D.G., P.G. Bray, R.H. Hughes, S.A. Ward and M.R.H. White, 2002. The pH of the Plasmodium falciparum digestive vacuole: Holy grail or dead-end trail? Trends Parasitol., 18(10): 441-444.
    CrossRef    
  34. Sullivan Jr., D.J., 2003. Hemozoin: A biocrystal synthesized during the degradation of Hemoglobin. Biopolymers, 9: 129-163.
  35. Talib, W.H. and A.M. Mahasneh, 2010. Antimicrobial, cytotoxicity and phytochemical screening of Jordanian plants used in traditional medicine. Molecules, 15: 1811-1824.
    CrossRef    PMid:20336015    
  36. Talib, W.H., M.H. Abu Zarga and A.M. Mahasneh, 2012. Antiproliferative, antimicrobial and apoptosis inducing effects of compounds isolated from Inula viscosa. Molecules, 17: 3291-3303.
    CrossRef    PMid:22418930    
  37. Tekwani, B.L. and L.A. Walker, 2005. Targeting the hemozoin synthesis pathway for new anti-malarial drug discovery: Technologies for in vitro ß-hematin formation assay. Comb. Chem. High T. Scr., 8: 63-79.
  38. Waller, K.L., R.A. Muhle, L.M. Ursos, P. Horrocks, D. Verdier-Pinard, A.B.S. Sidhu, H. Fujioka, P.D. Roepe and D.A. Fidock, 2003. Chloroquine resistance modulated in vitro by expression levels of the Plasmodium falciparum chloroquine resistance transporter. J. Biol. Chem., 278(35): 33593-33601.
    CrossRef    PMid:12813054    
  39. Wollenweber, E., K. Mayer and J.N. Roitman, 1991. Exudat flavonoids of Inula viscosa. Phytochemistry, 30(7): 2445-2446.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2044-2467
ISSN (Print):   2044-2459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved