Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     British Journal of Pharmacology and Toxicology


Haematological and Ponderal Changes Connected to Administration of Lead Acetate and Efavirenz in Wistar Rats

1, 2Alain K. Aïssi, 1Jean Robert Klotoé, 2Patient Guédénon, 3Alimba Chibuisi, 1Evelyne Lozès, 2, 4Patrick A. Edorh and 1Frédéric Loko
1Research Laboratory of Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Benin
2Interfaculty Center of Formation and Research in Environment for the Sustainable Development, University of Abomey-Calavi, Benin
3Department of Cell Biology and Genetics, Faculty of Science, University of Lagos, Nigeria
4Department of Biochemistry and Cellular Biology, Faculty of Science and Technology, University of Abomey-Calavi, Benin
British Journal of Pharmacology and Toxicology   2015  3:50-55
http://dx.doi.org/10.19026/bjpt.6.2111  |  © The Author(s) 2015
Received: ‎May ‎26, ‎2014  |  Accepted: June ‎18, ‎2014  |  Published: July 20, 2015

Abstract

Heavy metals and antiretroviral drugs are both types of xenobiotics that induce disturbances in the body. This study aims to assess the hematological and body weight changes connected to simultaneous exposure to lead and Efavirenz. Twenty-eight rats equally divided into four groups were force-fed once daily with distilled water (GCtrl), lead acetate at 10 mg/kg (GPb), Efavirenz at 20 mg/kg (GEfv) and lead acetate + Efavirenz (GPb+Efv). On Day 0, Day 14 and Day 28, the rats were weighted and retro-orbital blood collection was carried out for haemogram analysis. Results showed a significant decrease in hemoglobin level, haematocrit, erythrocytes and thrombocytes in GPb and GPb+Efv. This anaemia has tended to be normocytic hypochromic. There was no significant difference in the rates of decrease between GPb and GPb+Efv. No significant change was observed in the erythrocyte parameters in GEfv and GCtrl.The mean body weight of rats was significantly increased in GCtrl already from Day 7 while in GEfv, it is at from 21 day that, the weighty growth reached a significant level. There was no significant increase in body weight growth in GPb and GPb+Efv. In conclusion, contrary to lead, Efavirenz has not induced anaemia but it has slowed the body growth with a less intensity than lead. The co-administration of lead and Efavirenz did not induced significant additive effects comparatively to lead administration alone. Further studies are necessary for verifying whether co-exposure to these two xénobiotics for a longer period would not be likely to induce a significantly higher toxicity.

Keywords:

Body weight, Efavirenz, haematological parameter, lead, wistar rat,


References

  1. Adikwu, E., N. Brambaifa, O. Deo and P.G. Oru-Bo, 2013. Antiretroviral toxicity and oxidative stress. Am. J. Pharmacol. Toxicol., 8(4): 187-196.
    CrossRef    
  2. Ahmad, S.A., M.H. Khan, S. Khandker, A.F.M. Sarwar, N. Yasmin, M.H. Faruquee and R. Yasmin, 2014. Blood lead levels and health problems of lead acid battery workers in Bangladesh. Scientific World J., Article ID 974104, pp: 7.
  3. Andrews, K.W., D.A. Savitz and I. Hertz-Picciotto, 1994. Prenatal lead exposure in relation to gestational age and birth weight: A review of epidemiologic studies. Am. J. Ind. Med., 26(1):13-32.
    CrossRef    PMid:8074121    
  4. Annan, K., A.I. Kojo, A. Cindy, A.N. Samuel and B.M. Tunkumgnen, 2010. Profile of heavy metals in some medicinal plants from Ghana commonly used as components of herbal formulations. Pharmacognosy Res., 2(1): 41-44.
    CrossRef    PMid:21808538 PMCid:PMC3140128    
  5. Arpadjan, S., G. Celik, S. Taskesen and S. Güçer, 2008. Arsenic, cadmium and lead in medicinal herbs and their fractionation. Food Chem. Toxicol., 46(8): 2871-2875.
    CrossRef    PMid:18614270    
  6. Ashour, A.R.A., M.M. Yassin, N.M. Abu Aasi and R.M. Ali, 2007. Blood, serum glucose and renal parameters in lead-loaded albino rats and treatment with some chelating agents and natural oils. Turk J. Biol., 31: 25-34.
  7. Chinwe, O.U., C.N. Obinna, A. Akeem and B.I. Alo, 2010. Assessment of heavy metals in urban highway runoff from Ikorodu expressway Lagos, Nigeria. J. Environ. Chem. Ecotoxicol., 2(3): 34-37.
  8. Dallinger, R., F. Prosi, H. Segner and H. Back, 1987. Contaminated food and uptake of heavy metals by fish: A review and a proposal for further research. Oecologia, 73(1): 91-98.
    CrossRef    
  9. Descat, F., 2002. Hématologie du rat: Hémogramme et myélogramme. Ph. D. Thesis, Ecole Nationale Vétérinaire de Toulouse, p: 109.
  10. Elégbédé, B., A.P. Edorh, K.A. Aïssi, L. Koumolou, C. Kaki, P. Guédenon, S. Montcho and M. Boko, 2012. Blood lead levels and bio-markers of lead toxicity via the consumption of drinking water in Kérou (Benin) in watershed of the Niger. Int. J. Environ. Protect., 2(6): 10-15.
  11. Ercal, N., H. Gurer-Orhan and N. Aykin-Burns, 2001. Toxic metals and oxidative stress part I: Mechanisms involved in metal-induced oxidative damage. Current Topics Med. Chem., 1(6): 529-539.
    CrossRef    PMid:11895129    
  12. Fangnon, B., AY. Tohozin, P. Guedenon and A.P. Edorh, 2012. Conservation des produits agricoles et accumulation des métaux lourds dans les produits vivriers dans le département du Couffo (Benin). J. Appli. Biosci., 57: 4168-4176.
  13. Garnier, R., 2005. Toxicité du plomb et de ses dérivés. EMC- Toxicol. Pathol., 2(2): 67-88.
    CrossRef    
  14. Grandjean, P., B.M. Jensen, S.H. Sando, P.J. Jogensenans and S. Antonsen, 1989. Delayed blood regeneration in lead exposure: An effect on reserve capacity. Am. J. Pub. Health, 79(10): 1385-1388.
    CrossRef    PMid:2782508 PMCid:PMC1350180    
  15. Guédénon, P., A.P. Edorh, C. Kaki, A.P.E. Yehouenou, K. Gnandi, S. Montcho, A. Hounkpatin, L. Koumolou and M. Boko, 2012. Arsenic, cadmium, copper and lead accumulation in water, sediments and fish species of Oueme River in Bonou. British J. Pharmacol. Toxicol., 4(1): 13-20.
  16. Gürer, H., H., Özgünes, R., Neal, D.R., Spitz and N. Erçal, 1998. Antioxidant effects of N-acetylcysteine and succimer in red blood cells from lead-exposed rats. Toxicology, 128(3): 181-189.
    CrossRef    
  17. Kaminsky, P., M. Klein and M. Duc, 1993. Physiopathologie de l'intoxication par le plomb inorganique. Rev. Med. Interne., 14: 163-170.
    CrossRef    
  18. Kayode, A.A., O.T. Kayode, A.O. Aroyeun and M.C. Stephen, 2011. Haematologic and hepatic enzyme alterations associated with acute administration of antiretroviral drug. J. Pharmacol. Toxicol., 6(3): 293-302.
    CrossRef    
  19. Kempe, D.S., P.A. Lang, K. Eisele, B.A. Klarl, T. Wieder, S.M. Huber, C. Duranton and F. Lang, 2005. Stimulation of erythrocyte phosphatidylserine exposure by lead ions. Am. J. Physiol. Cell Physiol., 288(2): 396-402.
    CrossRef    PMid:15643053    
  20. Koumolou, L., P. Edorh, S. Montcho, K. Aklikokou, F. Loko, M. Boko and E.E. Creppy, 2013. Health-Risk market garden production linked to heavy metals in irrigation water in Benin. Comptes. Rendus de Biologie, 336(5): 278-283.
    CrossRef    PMid:23916203    
  21. Larroque, B. and S. Marret, 2000. Effets neurotoxiques du plomb chez l'enfant: Aspects biologiques et épidémiologiques. Méd. thérapeutique/Pédiatrie, 3(6): 474-481.
  22. Motao, Z., E.F. Fitzgerald, K.H. Gelberg, S. Lin and C.M. Druschel, 2010. Maternal low-level lead exposure and fetal growth. Environ. Health Perspect., 118(10): 1471-1475.
    CrossRef    PMid:20562053 PMCid:PMC2957931    
  23. Osterode, W., U. Barnas and K. Geissler, 1999. Dose dependent reduction of erythroid progenitor cells and inappropriate erythropoietin response in exposure to lead: New aspects of anaemia induced by lead. Occup. Environ. Med., 56: 106-109.
    CrossRef    
  24. Owolabi J.O., E. Opoola and C. Martins, 2012. Healing and prophylactic effects of Moringa oleifera leaf extract on lead induced damage to haematological and bone marrow elements in adult Wistar rat models. Open Access Scientific Reports, 1(8): 386.
  25. Piddington, S.K. and J.M. White, 1974. The effect of lead on total globin and a- and p-chain synthesis; in Vitroand in vivo. British J. Haematol., 27(3): 415-427.
    CrossRef    PMid:4416202    
  26. Ronis, M.J.J., T.M. Badger, S.J. Shema, P.K. Roberson, L. Templer, D. Ringer and P.K. Thomas, 1998. Endocrine mechanisms underlying the growth effects of developmental lead exposure in the rat. J. Toxicol. Environ. Health, Part A, 54(2): 101-120.
  27. Saka, S., A. Bahi and W. Aouacheri, 2011. L’effet du stress oxydant induit par l’acétate de plomb sur le système enzymatique du glutathion chez les rats. The effect of oxidative stress induced by lead acetate on the glutathione enzymatic system in rats. Annales de Toxicologie Analytique, 23(3): 1-7.
    CrossRef    
  28. Saxena, G. and S.J.S. Flora, 2004. Lead-induced oxidative stress and haematological alterations and their response to combined administration of calcium disodium EDTA with a thiol chelator in rats. J. Biochem. Mol. Toxicol., 18(4): 221-233.
    CrossRef    PMid:15452883    
  29. Schwartz, J., 1992. Low level health effects of lead: Growth, development and neurological disturbances. In: Needleman, H.L., (Ed.), Human Lead Exposure. CRC Press, Boca Raton, FL, pp: 233-242.
  30. Schwartz, J., P.J. Landrigan, E.L. Baker, W.A. Orenstein and I.H. von Lindern, 1990. Lead-induced anemia: Dose-response relationships and evidence for a threshold. Am. J. Pub. Health, 80(2):165-168.
    CrossRef    PMid:2297059 PMCid:PMC1404621    
  31. Shen, X., J.F. Rosen, D. Guo and S. Wua, 1996. Childhood lead poisoning in China. Sci. Total Environ., 181(2): 101-109.
    CrossRef    
  32. Sokol, R.Z., S. Wang, Y.Y. Wan, F.Z. Stanczyk, E. Gentzschein and R.E. Chapin, 2002. Long-term, low-dose lead exposure alters the gonadotropin-releasing hormone system in the male rat. Environ. Health Perspectives, 110(9): 871-874.
    CrossRef    PMid:12204820 PMCid:PMC1240985    
  33. Sundström, R., N.G. Conradi and P. Sourander, 1984. Vulnerability to lead in protein deprived suckling rats. Acta Neuropathol., 62(4): 276-283.
    CrossRef    PMid:6730906    
  34. Valentine, W.N., D.E. Paglia, K. Fink and G. Madokoro, 1976. Lead poisoning: Association with hemolytic anemia, basophilic stippling, erythrocyte pyrimidine 5'-nucleotidase deficiency and intraerythrocytic accumulation of pyrimidines. J. Clin. Invest., 58(4): 926-932.
    CrossRef    PMid:965496 PMCid:PMC333255    
  35. Vighi, M., 1981. Lead uptake and release in an experimental trophic chain. Ecotoxicol. Environ. Safety, 5(2): 177-193.
    CrossRef    
  36. Waldron, H.A, 1966. The anaemia of lead poisoning: A review. British J. Ind. Med., 23(2): 83-100.
    CrossRef    
  37. White, J.M. and D.R. Harvey, 1972. Biological science: Defective synthesis of a and ß Globin Chains in lead poisoning. Nature, 236: 71-73.
    CrossRef    PMid:4553457    
  38. World Health Organization (WHO), 2010. Antiretroviral therapy for HIV infection in infants and children: Towards universal access. Recommendations for a public health approach, Geneva, pp: 167.
  39. World Health Organization (WHO), 2013. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. Recommendations for a public health approach, Geneva, pp: 272.

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2044-2467
ISSN (Print):   2044-2459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved