Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Current Research Journal of Biological Sciences


Human Biological Aging: A Vector Model

Jorge Barragán and Sebastián Sánchez
Universidad del Gran Rosario, Bs As 974, Rosario (2000), Argentina
Current Research Journal of Biological Sciences  2019  2:13-16
http://dx.doi.org/10.19026/crjbs.11.6024  |  © The Author(s) 2019
Received: May 13, 2019  |  Accepted: June 26, 2019  |  Published: August 20, 2019

Abstract

Keeping in mind the relationship between the basal metabolic rate and the change in weight in the aging process, we propose to generate a model of the same. As a result of data transformation, we obtained a graphic representation that is consistent with the original data. This representation manifested that after puberty, the parameter space loses its initial planarity. Thus, the model helps to sustain that the geometric phase changes that occur when the parameter space undergoes a gradual curvature, can contribute to explaining the biological aging process.

Keywords:

After puberty, geometric phase, graphical representation, homeostasis decline, oscillatory physical systems, parameter space curvatures, self organization decline,


References

  1. Barragán, J. and S. Sánchez, 2013. Aging: The evolution of body weight and its relation to the complexity of organism. Curr. Res. J. Biol. Sci., 5(6): 262-265.
    CrossRef    
  2. Barragán, J. and S. Sánchez, 2015. Biological aging: From the boolean networks, to the geometric phase. Curr. Res. J. Biol. Sci., 7(3): 47-52.
    CrossRef    
  3. Berry, M., 1988. The geometric phase. Sci. Am., 259(6): 46-55. https://doi.org/10.1038/scientificamerican1288-46
    CrossRef    
  4. Blagosklonny, V.M., 2010. Revisiting the antagonistic pleiotropy theory of aging. Cell Cycle, 9(16): 3151-3156.https://doi.org/10.4161/cc.9.16.13120
    CrossRef    PMid:20724817    
  5. Campisi, J. and J. Sedivy, 2009. How does proliferative homeostasis change with age? What causes it and how does it contribute to aging? J. Gerontol. A Biol. Sci. Med. Sci., 64(2): 164-166.
    CrossRef    PMid:19228778 PMCid:PMC2655008    
  6. Cao, Y., A. Lopatkin and L. You, 2016. Elements of biological oscillations in time and space. Nat. Struct. Mol. Biol., 23: 1030-1034.
    CrossRef    PMid:27922613    
  7. Carollo, A., I. Fuentes-Guridi, M.F. Santos and V. Vedral, 2003. Geometric phase in open systems. Phys. Rev. Lett., 90(16): 160402.
    CrossRef    PMid:12731961    
  8. Choi, J.W. and S.H. Pai, 2003. Bone mineral density correlates strongly with basal metabolic rate in postmenopausal women. Clin. Chim. Acta., 333(1): 79-84.
    CrossRef    
  9. Gaziev, A.I., S. Abdullaev and A. Podlutsky, 2014. Mitochondrial function and mitochondrial DNA maintenance with advancing age. Biogerontology, 15(5): 417-438.
    CrossRef    PMid:25015781    
  10. Graudenzi, A., R. Serra, M. Villani, C. Damiani, A. Colacci and S.A. Kauffman, 2011. Dynamical properties of a Boolean model of gene regulatory network with memory. J. Comput. Biol., 18(10): 1291-1303.
    CrossRef    PMid:21214342    
  11. Gutiérrez-Salinas, J., P. Mondragón-Terán, L. García-Ortíz, S. Hernández-Rodríguez, S. Ramírez-García and N. Núñez-Ramos, 2014. Brief description of the molecular mechanisms of cellular damage caused by free radicals derived from oxygen and nitrogen. Rev. Esp. Med. Quir., 19(4): 446-454.
    Direct Link
  12. Jin, K., 2010. Modern biological theories of aging. Aging Dis., 1(2): 72-74.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2995895/.
    Direct Link
  13. Kauffman, S.A. 1991. Antichaos and adaptation. Sci. Am., 265(2): 78-84.https://doi.org/10.1038/scientificamerican0891-78
    CrossRef    PMid:1862333    
  14. Kersting, M., W. Sichert-Hellert, B. Lausen, U. Alexy, F. Manz and G. Schöch, 1998. Energy intake of 1 to 18 year old German children and adolescents. Z Ernahrungswiss, 37(1): 47-55.
    CrossRef    PMid:9556867    
  15. Koga, H., S. Kaushik and A.M. Cuervo, 2011. Protein homeostasis and aging: The importance of exquisite quality control. Ageing Res. Rev., 10(2): 205-215.
    CrossRef    PMid:20152936 PMCid:PMC2888802    
  16. Kuilman, T., C. Michaloglou, W.J. Mooi and D.S. Peeper, 2010. The essence of senescence. Genes. Dev., 24(22): 2463-2479.
    CrossRef    PMid:21078816 PMCid:PMC2975923    
  17. Lauri, A., G. Pompilio and M.C. Capogrossi, 2014. The mitochondrial genome in aging and senescence. Aging Res. Rev., 18: 1-15.
    CrossRef    PMid:25042573    
  18. MacCallum, R.C., K.F. Widaman, K.J. Preacher and S. Hong, 2001. Sample size in factor analysis: The role of model error. Multivariate Behav. Res., 36(4): 611-637.
    CrossRef    PMid:26822184    
  19. Maestrini, D., D. Abler, V. Adhikarla, S. Armenian, S. Branciamore et al., ?2018. Aging in a relativistic biological space-time. Front. Cell Dev. Biol., 6: 55.
    CrossRef    PMid:29896473 PMCid:PMC5986934    
  20. Matsuno, K., ?1978. Evolution of dissipative system: A theoretical basis of Margalef's principle on ecosystem.? J. Theor. Biol., 70(1): 23-31.
    CrossRef    
  21. McHugh, D. and J. Gil, 2017. Senescence and aging: Causes, consequences, and therapeutic avenues. J. Cell Biol., 217(1): 65-77.
    CrossRef    PMid:29114066 PMCid:PMC5748990    
  22. Pulselli, R.M., E. Simoncini and E. Tiezzi, 2009. Self-organization in dissipative structures: A thermodynamic theory for the emergence of prebiotic cells and their epigenetic evolution. Bio Syst., 96(3): 237-41.
    CrossRef    PMid:19758548    
  23. Salama, R., M. Sadaie, M. Hoare and M. Narita, 2014. Cellular senescence and its effector programs. Genes Dev., 28: 99-114.
    CrossRef    PMid:24449267 PMCid:PMC3909793    
  24. Sargent, R.G., 2013. Verification and validation of simulation models. J. Simulat., 7(1): 12-24.https://doi.org/10.1057/jos.2012.20
    CrossRef    
  25. Sergiev, P.V., O.A. Dontsova and G.V. Berezkin, 2015. Theories of aging: An ever-evolving field. Acta Naturae, 7(1): 9-18.
    CrossRef    PMid:25926998 PMCid:PMC4410392    
  26. Sun, N., R.J. Youle and T. Finkel, 2016. The mitochondrial basis of aging. Mol. Cell., 61(05): 654-666.https://doi.org/10.1016/j.molcel.2016.01.028
    CrossRef    PMid:26942670 PMCid:PMC4779179    
  27. Tourigny, D.S., 2014. Geometric phase shifts in biological oscillators. J. Theor. Biol., 355: 239-242.https://doi.org/10.1016/j.jtbi.2014.04.017
    CrossRef    PMid:24769251    
  28. Wedlich-Söldner, R. and T. Betz, 2018 Self-organization: The fundament of cell biology. Philos. T. Roy Soc. B, 373(1747): 20170103.
    CrossRef    PMid:29632257 PMCid:PMC5904291    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2041-0778
ISSN (Print):   2041-076X
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved