Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Current Research Journal of Biological Sciences


Role 14-3-3 Protein in Regulation Some Cellular Processes

1, 3Nagam Khudhair, 1Yu Cuiping, 2Ahmed Khalid and 1Xuejun Gao
1The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University
2College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
3College of Education for Women, University of Anbar, Al Rumadi 31001, Iraq
Current Research Journal of Biological Sciences  2014  5:197-204
http://dx.doi.org/10.19026/crjbs.6.5193  |  © The Author(s) 2014
Received: May ‎10, ‎2014  |  Accepted: July ‎01, ‎2014  |  Published: September 20, 2014

Abstract

The aim of this study to review an overview of the current information on the structure of proteins 14-3-3 and their complexes, in addition to that it provides insights into the mechanisms of their functions. The 14-3-3 proteins are from families maintain regulatory molecules expressed in all eukaryotic cells. It was discovered before thirty years, it is attributes of 14-3-3 proteins are able to connect a large number of signalling proteins are functionally diverse, including kinases, phosphatases and transmembrane receptors. 14-3-3 proteins play an important role in a variety of vital regulatory processes, such as protein regulation, apoptotic cell death and cell cycle control. In this review, we discussed the structural basis of 14-3-3 proteins, common structural features of their complexes, Phosphorylation, Cell cycle and Apoptosis.

Keywords:

14-3-3 Protein, apoptosis, cell cycle, phosphorylation, structure,


References

  1. Ahmed, K., M. Fan, D. Nantajit, N. Cao and J.J. Li, 2008. Cyclin D1 in low-dose radiation-induced adaptive resistance. Oncogene, 27: 6738-6748.
    CrossRef    PMid:18695676    
  2. Aitken, A., 2006. 14-3-3 proteins: A historic overview: Semin. Cancer Biol., 16: 162-172.
    CrossRef    PMid:16678438    
  3. Athwal, G.S., J.L. Huber and S.C. Huber, 1998. Biological significance of divalent metal ion binding to 14-3-3 proteins in relationship to nitrate reductase inactivation. Plant Cell Physiol., 39: 1065-1072.
    CrossRef    PMid:9871366    
  4. Brunet, A., A. Bonni, M.J. Zigmond, M. Lin, P. Juo, L. Hu, M. Anderson, K. Arden, J. Blenis and M. Greenberg, 1999. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96: 857-868.
    CrossRef    
  5. Brunet, A., F. Kanai, J. Stehn, J. Xu, D. Sarbassova, J.V. Frangioni, S.N. Dalal, J.A. DeCaprio, M.E. Greenberg and M.B. Yaffe, 2004. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J. Cell Biol., 156: 817-28.
    CrossRef    PMid:11864996 PMCid:PMC2173313    
  6. Bulavin, D.V., Y. Higashimoto, Z.N. Demidenko, S. Meek, P. Graves, C. Phillips, H. Zhao, S.A. Moody, E. Appella, H. Piwnica-Worms and A.J. Fornace, 2003. Dual phosphorylation controls Cdc25 phosphatases and mitotic entry. Nat. Cell Biol., 5: 545-51.
    CrossRef    PMid:12766774    
  7. Cao, W., X. Yang, J. Zhou, Z. Teng, L. Cao, X. Zhang and Z. Fei, 2010. Targeting 14-3-3 protein, difopein induces apoptosis of human glioma cells and suppresses tumour growth in mice. Apoptosis, 15: 230-241.
    CrossRef    PMid:20033782    
  8. Choudhary, C., C. Kumar, F. Gnad, M. Nielsen, M. Rehman, T.C. Walther, J.V. Olsen and M. Mann, 2009. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 325: 834-840.
    CrossRef    PMid:19608861    
  9. Clokie, S., K. Cheung, S. Mackie, R. Marquez, A. Peden and A. Aitken, 2005. BCR kinase phosphorylates 14-3-3 Tau on residue 233. FEBS J., 272: 3767-3776.
    CrossRef    PMid:16045749    
  10. Dubois, T., C. Rommel, S. Howell, U. Steinhussen, Y. Soneji, N. Morrice, K. Moelling and A. Aitken, 1997a. 14-3-3 is phosphorylated by casein kinase I on residue 233. Phosphorylation at this site in vivo regulates Raf/14-3-3 interaction. J. Biol. Chem., 272: 28882-28888.
    CrossRef    PMid:9360956    
  11. Dubois, T., S. Howell, B. Amess, P. Kerai, N. Learmonth, J. Madrazo, M. Chaudhri, K. Rittinger, M. Scarabel, Y. Soneji and A. Aitken, 1997b. Structure and sites of phosphorylation of 14-3-3 protein: Role in coordinating signal transduction pathways. J. Protein Chem., 16: 513-522.
    CrossRef    PMid:9246637    
  12. Foote, M. and Y. Zhou, 2012. 14-3-3 proteins in neurological disorders. Int. J. Biochem. Mol. Biol., 3: 152-164.
    PMid:22773956 PMCid:PMC3388734    
  13. Ford, J.C., F. Al-Khodairy, E. Fotou, K.S. Sheldrick, D.J. Griths and A.M. Carr, 1994. 14-3-3 protein homologs required for the DNA damage checkpoint in fission yeast. Science, 265: 533-535.
    CrossRef    PMid:8036497    
  14. Forrest, A. and B. Gabrielli, 2001. Cdc25B activity is regulated by 14-3-3. Oncogene, 20: 4393-401.
    CrossRef    PMid:11466620    
  15. Fu, H., R.R. Subramanian and S.C. Masters, 2000. 14-3-3 proteins: Structure, function and regulation. Ann. Rev. Pharmacol. Toxicol., 40: 617-647.
    CrossRef    PMid:10836149    
  16. Gough, N.R. and J.F. Foley, 2010. Focus issue: Systems analysis of protein phosphorylation. Sci. Signal., 3: eg6, Doi: 10.1126/scisignal.3137eg6.
    CrossRef    
  17. Hermeking, H. and A. Benzinger, 2006. 14-3-3 proteins in cell cycle regulation. Semin. Cancer Biol., 16: 183-192.
    CrossRef    
  18. Ichimura, T., M. Taoka, I. Shoji, H. Kato, T. Sato et al., 2013. 14-3-3 proteins sequester a pool of soluble TRIM32 ubiquitin ligase to repress autoubiquitylation and cytoplasmic body formation. J. Cell Sci., 126: 2014-2026.
    CrossRef    PMid:23444366    
  19. Ichimura, T., T. Isobe, T. Okuyama, N. Takahashi, K. Araki, R. Kuwano et al., 1988. Molecular cloning of cDNA coding for brain-specific 14-3-3 protein: A protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. Proc. Natl. Acad. Sci. USA, 85: 7084-7088.
    CrossRef    PMid:2902623 PMCid:PMC282128    
  20. Jiang, K., E. Pereira, M. Maxfield, B. Russell, D.M. Goudelock and Y. Sanchez, 2003. Regulation of Chk1 includes chromatin association and 14-3-3 binding following phosphorylation on Ser-345. J. Biol. Chem., 278: 25207-25217.
    CrossRef    PMid:12676962    
  21. Johnson, C., S. Crowther, M.J. Stafford, D.G. Campbell, R. Toth and C. MacKintosh, 2010. Bioinformatic and experimental survey of 14-3-3-binding sites. Biochem. J., 427: 69-7810.
    CrossRef    PMid:20141511 PMCid:PMC2860806    
  22. Kim, J., M. Kundu, B. Viollet and K.L. Guan, 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 13: 132-141.
    CrossRef    PMid:21258367 PMCid:PMC3987946    
  23. Kumar, A.P., G.E. Garcia, J. Orsborn, V. Levin and T. Slaga, 2003. 2-Methoxyestradiol interferes with NF kappa B transcriptional activity in primitive neuroectodermal brain tumors: Implications for management. Carcinogenesis, 24: 209-216.
    CrossRef    PMid:12584169    
  24. Liu, D., J. Bienkowska, C. Petosa, R.J. Collier, H. Fu and R. Liddington, 1995. Crystal structure of the zeta isoform of the 14-3-3 protein. Nature, 376: 191-194.
    CrossRef    PMid:7603574    
  25. Ma, Y., S. Pitson, T. Hercus, J. Murphy, A. Lopez and J. Woodcock, 2005. Sphingosine activates PKA type II by a novel cAMP-independent mechanism. J. Biol. Chem., 280: 26011-26017.
    CrossRef    PMid:15883165    
  26. Mackintosh, C., 2004. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem. J., 381: 329-342.
    CrossRef    PMid:15167810 PMCid:PMC1133837    
  27. Masters, S.C., R. Subramanian, A. Truong, H. Yang, K. Fujii, H. Zhang and H. Fu, 2002. Survival promoting functions of 14-3-3 proteins. Biochem. Soc. T., 30: 360-365.
    CrossRef    PMid:12196095    
  28. Megidish, T., J. Cooper, L. Zhang, H. Fu and S. Hakomori, 1998. A novel sphingosine-dependent protein kinase (SDK1) is associated with and specifically phosphorylates certain isoforms of 14-3-3 protein J. Biol. Chem., 273: 21834-21845.
    CrossRef    PMid:9705322    
  29. Mercedes, P.R., 2012. 14-3-3 Proteins are regulators of autophagy. Cells, 1: 754-773.
    CrossRef    PMid:24710529 PMCid:PMC3901138    
  30. Mhawech, P., 2005. 14-3-3 proteins: An update. Cell Res., 15: 228-236.
    CrossRef    PMid:15857577    
  31. Moore, B.W., V.J. Perez and F.D. Carlson, 1967. Physiological and Biochemical Aspects of Nervous Integration. Prentice-Hall Inc., The Marine Biological Laboratory, Woods Hole, MA, pp: 343-359.
    PMid:4378269    
  32. Moore, B.W., V.J. Perez and M. Gehring, 1968. Assay and regional distribution of a soluble protein characteristic of the nervous system. J. Neurochem., 15: 265-272.
    CrossRef    PMid:4966699    
  33. Neal, C.L., J. Yao, W. Yang, X. Zhou, N. Nguyen, J. Lu, C. Danes, H. Guo, K. Lan, J. Ensor, W. Hittelman, M. Hung and D. Yu, 2009. 14-3-3zeta overexpression defines high risk for breast cancer recurrence and promotes cancer cell survival. Cancer Res., 69: 3425-3432.
    CrossRef    PMid:19318578 PMCid:PMC2671640    
  34. Nikolai, N., V. Natalya, V. Maria, V. Irina, A. Alfred, I. Dmitrii and B. Nikolai, 2012. Monomeric 14-3-3? has a chaperone-like activity and is stabilized by phosphorylated HspB6. Biochemistry, 51: 6127-6138.
    CrossRef    PMid:22794279 PMCid:PMC3413243    
  35. Obsil, T., R. Ghirlando, D.C. Klein, S. Ganguly and F. Dyda, 2001. Crystal structure of the 14-3-3zeta: Serotonin N-acetyltransferase complex. A role for scaffolding in enzyme regulation. Cell, 105: 257-267.
    CrossRef    
  36. Obsilova, V., P. Herman, J. Vecer, M. Sulc, J. Teisinger and T. Obsil, 2004. 14-3-3zeta C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232. J. Biol. Chem., 279: 4531-4540.
    CrossRef    PMid:14613942    
  37. Pallas, D.C., H. Fu, L.C. Haehnel, W. Weller, R.J. Collier and T.M. Roberts, 1994. Association of polyomavirus middle tumor antigen with 14-3-3 proteins. Science, 265: 535-537.
    CrossRef    PMid:8036498    
  38. Petosa, C., S.C. Masters, L.A. Bankston, J. Pohl, B. Wang, H. Fu and R.C. Liddington, 1998. 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J. Biol. Chem., 273: 16305-16310.
    CrossRef    PMid:9632691    
  39. Powell, D.W., M.J. Rane, B.A. Joughin, R. Kalmukova, J.H. Hong, B. Tidor, W.L. Dean, W.M. Pierce, J.B. Klein, M.B. Yaffe and K.R. Mcleish, 2003. Proteomic identification of 14-3-3zeta as a mitogen-activated protein kinase-activated protein kinase 2 substrate: role in dimer formation and ligand binding. Mol. Cell Biol., 23: 5376-5387.
    CrossRef    PMid:12861023 PMCid:PMC165733    
  40. Rittinger, K., J. Budamn, J. Xu, S. Volinia, L.C. Cantley, S.J. Smerdon, S.J. Gamblin and M.B. Yaffe, 1999. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol. Cell., 4: 153-166.
    CrossRef    
  41. Rommel, C., G. Radziwill, J. Lovric, J. Noeldeke, T. Heinicke, D. Jones, A. Aitken and K. Moelling, 1996. Activated ras displaces 14-3-3 protein from the amino terminus of c-Raf-1. Oncogene, 12: 609-619.
    PMid:8637718    
  42. Samuel, T., H.O. Weber, P. Rauch, B. Verdoodt, J.T. Eppel, A. McShea, H. Hermeking and J.O. Funk, 2001. The G2/M regulator 14-3-3sigma prevents apoptosis through sequestration of bax. J. Biol. Chem., 276: 45201-45206.
    CrossRef    PMid:11574543    
  43. Sancar, A., L.A. Lindsey-Boltz, K. Unsal-Kacmaz and S. Linn, 2004. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem., 73: 39-85.
    CrossRef    PMid:15189136    
  44. Shen, Y.H., J. Godlewski, A. Bronisz, J. Zhu, M.J. Comb, J. Avruch and G. Tzivion, 2003. Significance of 14-3-3 selfdimerization for phosphorylation-dependent target binding. Mol. Biol. Cell., 14: 4721-4733.
    CrossRef    PMid:14551260 PMCid:PMC266786    
  45. Shimada, T., E. Alyson and K. Yamagata, 2013. Neuroprotective function of 14-3-3 proteins in neurodegeneration. BioMed. Res. Int., 2013: 11.
    CrossRef    PMid:24364034 PMCid:PMC3865737    
  46. Silhan, J., V. Obsilova, J. Vecer, P. Herman, M. Sulc, J. Teisinger and T. Obsil, 2004. 14-3-3 protein C-terminal stretch occupies ligand binding groove and is displaced by phosphopeptide binding. J. Biol. Chem., 279: 49113-49119.
    CrossRef    PMid:15347690    
  47. Sluchanko, N., I. Chernik, A. Seit-Nebi, A. Pivovarova, D. Levitsky and N. Gusev, 2008. Effect of mutations mimicking phosphorylation on the structure and properties of human 14-3-3zeta. Arch. Biochem. Biophys., 477: 305-312.
    CrossRef    PMid:18559254    
  48. Sluchanko, N.N. and N.B. Gusev, 2010. 14-3-3 proteins and regulation of cytoskeleton. Biochemistry (Moscow), 75: 1528-1546.
    CrossRef    
  49. Sunayama, J., F. Tsuruta, N. Masuyama and Y. Gotoh, 2005. JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3. J. Cell Biol., 170: 295-304.
    CrossRef    PMid:16009721 PMCid:PMC2171419    
  50. Toker, A., C. Ellis, L. Sellers and A. Aitken, 1990. Purification from sheep brain and sequence similarity to lipocortins and 14-3-3 protein. Eur. J. Biochem., 191: 421-429.
    CrossRef    PMid:2143472    
  51. Tsuruta, F., J. Sunayama, Y. Mori, S. Hattori, S. Shimizu, Y. Tsujimoto, K. Yoshioka, N. Masuyama and Y. Gotoh, 2004. JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. Embo. J., 23: 1889-1899.
    CrossRef    PMid:15071501 PMCid:PMC394248    
  52. Tzivion, G. and J. Avruch, 2002. 14-3-3 proteins: Active cofactors in cellular regulation by serine/threonine phosphorylation. J. Biol. Chem., 277: 3061-3064.
    CrossRef    PMid:11709560    
  53. Wilker, E. and M.B. Yaffe, 2004. 14-3-3 proteins: A focus on cancer and human disease. J. Mol. Cell Cardiol., 37: 633-642.
    CrossRef    PMid:15350836    
  54. Wilker, E.W., R.A. Grant, S.C. Artim and M.B. Yaffe, 2005. A structural basis for 14-3-3sigma functional specificity. J. Biol. Chem., 280: 18891-18898.
    CrossRef    PMid:15731107    
  55. Won, J., D.Y. Kim, M. La, D. Kim, G. Meadows and C.O. Joe, 2003. Cleavage of 14-3-3 protein by caspase-3 facilitates bad interaction with Bcl-x(L) during apoptosis. J. Biol., 278: 19347-19351.
    CrossRef    
  56. Woodcock, J.M., J. Murphy, F.C. Stomski, M.C. Berndt and A.F. Lopez, 2003. The dimeric versus monomeric status of 14-3-3zeta is controlled by phosphorylation of Ser58 at the dimer interface. J. Biol. Chem., 278: 36323-36327.
    CrossRef    PMid:12865427    
  57. Wurtele, M., C. Jelich-Ottmann, A. Wittinghofer and C. Oecking, 2003. Structural view of a fungal toxin acting on a 14-3-3 regulatory complex. Embo. J., 22: 987-994.
    CrossRef    PMid:12606564 PMCid:PMC150337    
  58. Xiao, B., S.J. Smerdon, D.H. Jones, G.G. Dodson, Y. Soneji, A. Aitken and S.J. Gamblin, 1995. Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature, 376: 188-191.
    CrossRef    PMid:7603573    
  59. Yaffe, M.B., 2002. How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett., 513: 53-57.
    CrossRef    
  60. Zha, J., H. Harada, E. Yang, J. Jockel and S.J. Korsmeyer, 1996. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell, 87: 619-628.
    CrossRef    
  61. Zhai, J., H. Lin, M. Shamim, W.W. Schlaepfer and R. Ca-ete-Soler, 2001. Identification of a novel interaction of 14-3-3 with p190RhoGEF. J. Biol. Chem., 276: 41318-41324.
    CrossRef    PMid:11533041    
  62. Zhang, L., J. Chen and H. Fu, 1999. Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins. Proc. Natl. Acad. Sci. USA, 96: 8511-8515.
    CrossRef    PMid:10411906 PMCid:PMC17547    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2041-0778
ISSN (Print):   2041-076X
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved