Research Article | OPEN ACCESS
Role 14-3-3 Protein in Regulation Some Cellular Processes
1, 3Nagam Khudhair, 1Yu Cuiping, 2Ahmed Khalid and 1Xuejun Gao
1The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University
2College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
3College of Education for Women, University of Anbar, Al Rumadi 31001, Iraq
Current Research Journal of Biological Sciences 2014 5:197-204
Received: May 10, 2014 | Accepted: July 01, 2014 | Published: September 20, 2014
Abstract
The aim of this study to review an overview of the current information on the structure of proteins 14-3-3 and their complexes, in addition to that it provides insights into the mechanisms of their functions. The 14-3-3 proteins are from families maintain regulatory molecules expressed in all eukaryotic cells. It was discovered before thirty years, it is attributes of 14-3-3 proteins are able to connect a large number of signalling proteins are functionally diverse, including kinases, phosphatases and transmembrane receptors. 14-3-3 proteins play an important role in a variety of vital regulatory processes, such as protein regulation, apoptotic cell death and cell cycle control. In this review, we discussed the structural basis of 14-3-3 proteins, common structural features of their complexes, Phosphorylation, Cell cycle and Apoptosis.
Keywords:
14-3-3 Protein, apoptosis, cell cycle, phosphorylation, structure,
References
-
Ahmed, K., M. Fan, D. Nantajit, N. Cao and J.J. Li, 2008. Cyclin D1 in low-dose radiation-induced adaptive resistance. Oncogene, 27: 6738-6748.
CrossRef PMid:18695676
- Aitken, A., 2006. 14-3-3 proteins: A historic overview: Semin. Cancer Biol., 16: 162-172.
CrossRef PMid:16678438
-
Athwal, G.S., J.L. Huber and S.C. Huber, 1998. Biological significance of divalent metal ion binding to 14-3-3 proteins in relationship to nitrate reductase inactivation. Plant Cell Physiol., 39: 1065-1072.
CrossRef PMid:9871366
- Brunet, A., A. Bonni, M.J. Zigmond, M. Lin, P. Juo, L. Hu, M. Anderson, K. Arden, J. Blenis and M. Greenberg, 1999. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96: 857-868.
CrossRef
- Brunet, A., F. Kanai, J. Stehn, J. Xu, D. Sarbassova, J.V. Frangioni, S.N. Dalal, J.A. DeCaprio, M.E. Greenberg and M.B. Yaffe, 2004. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J. Cell Biol., 156: 817-28.
CrossRef PMid:11864996 PMCid:PMC2173313
-
Bulavin, D.V., Y. Higashimoto, Z.N. Demidenko, S. Meek, P. Graves, C. Phillips, H. Zhao, S.A. Moody, E. Appella, H. Piwnica-Worms and A.J. Fornace, 2003. Dual phosphorylation controls Cdc25 phosphatases and mitotic entry. Nat. Cell Biol., 5: 545-51.
CrossRef PMid:12766774
- Cao, W., X. Yang, J. Zhou, Z. Teng, L. Cao, X. Zhang and Z. Fei, 2010. Targeting 14-3-3 protein, difopein induces apoptosis of human glioma cells and suppresses tumour growth in mice. Apoptosis, 15: 230-241.
CrossRef PMid:20033782
-
Choudhary, C., C. Kumar, F. Gnad, M. Nielsen, M. Rehman, T.C. Walther, J.V. Olsen and M. Mann, 2009. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 325: 834-840.
CrossRef PMid:19608861
-
Clokie, S., K. Cheung, S. Mackie, R. Marquez, A. Peden and A. Aitken, 2005. BCR kinase phosphorylates 14-3-3 Tau on residue 233. FEBS J., 272: 3767-3776.
CrossRef PMid:16045749
- Dubois, T., C. Rommel, S. Howell, U. Steinhussen, Y. Soneji, N. Morrice, K. Moelling and A. Aitken, 1997a. 14-3-3 is phosphorylated by casein kinase I on residue 233. Phosphorylation at this site in vivo regulates Raf/14-3-3 interaction. J. Biol. Chem., 272: 28882-28888.
CrossRef PMid:9360956
- Dubois, T., S. Howell, B. Amess, P. Kerai, N. Learmonth, J. Madrazo, M. Chaudhri, K. Rittinger, M. Scarabel, Y. Soneji and A. Aitken, 1997b. Structure and sites of phosphorylation of 14-3-3 protein: Role in coordinating signal transduction pathways. J. Protein Chem., 16: 513-522.
CrossRef PMid:9246637
-
Foote, M. and Y. Zhou, 2012. 14-3-3 proteins in neurological disorders. Int. J. Biochem. Mol. Biol., 3: 152-164.
PMid:22773956 PMCid:PMC3388734
-
Ford, J.C., F. Al-Khodairy, E. Fotou, K.S. Sheldrick, D.J. Griths and A.M. Carr, 1994. 14-3-3 protein homologs required for the DNA damage checkpoint in fission yeast. Science, 265: 533-535.
CrossRef PMid:8036497
- Forrest, A. and B. Gabrielli, 2001. Cdc25B activity is regulated by 14-3-3. Oncogene, 20: 4393-401.
CrossRef PMid:11466620
- Fu, H., R.R. Subramanian and S.C. Masters, 2000. 14-3-3 proteins: Structure, function and regulation. Ann. Rev. Pharmacol. Toxicol., 40: 617-647.
CrossRef PMid:10836149
- Gough, N.R. and J.F. Foley, 2010. Focus issue: Systems analysis of protein phosphorylation. Sci. Signal., 3: eg6, Doi: 10.1126/scisignal.3137eg6.
CrossRef
- Hermeking, H. and A. Benzinger, 2006. 14-3-3 proteins in cell cycle regulation. Semin. Cancer Biol., 16: 183-192.
CrossRef
-
Ichimura, T., M. Taoka, I. Shoji, H. Kato, T. Sato et al., 2013. 14-3-3 proteins sequester a pool of soluble TRIM32 ubiquitin ligase to repress autoubiquitylation and cytoplasmic body formation. J. Cell Sci., 126: 2014-2026.
CrossRef PMid:23444366
-
Ichimura, T., T. Isobe, T. Okuyama, N. Takahashi, K. Araki, R. Kuwano et al., 1988. Molecular cloning of cDNA coding for brain-specific 14-3-3 protein: A protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. Proc. Natl. Acad. Sci. USA, 85: 7084-7088.
CrossRef PMid:2902623 PMCid:PMC282128
- Jiang, K., E. Pereira, M. Maxfield, B. Russell, D.M. Goudelock and Y. Sanchez, 2003. Regulation of Chk1 includes chromatin association and 14-3-3 binding following phosphorylation on Ser-345. J. Biol. Chem., 278: 25207-25217.
CrossRef PMid:12676962
- Johnson, C., S. Crowther, M.J. Stafford, D.G. Campbell, R. Toth and C. MacKintosh, 2010. Bioinformatic and experimental survey of 14-3-3-binding sites. Biochem. J., 427: 69-7810.
CrossRef PMid:20141511 PMCid:PMC2860806
- Kim, J., M. Kundu, B. Viollet and K.L. Guan, 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 13: 132-141.
CrossRef PMid:21258367 PMCid:PMC3987946
- Kumar, A.P., G.E. Garcia, J. Orsborn, V. Levin and T. Slaga, 2003. 2-Methoxyestradiol interferes with NF kappa B transcriptional activity in primitive neuroectodermal brain tumors: Implications for management. Carcinogenesis, 24: 209-216.
CrossRef PMid:12584169
- Liu, D., J. Bienkowska, C. Petosa, R.J. Collier, H. Fu and R. Liddington, 1995. Crystal structure of the zeta isoform of the 14-3-3 protein. Nature, 376: 191-194.
CrossRef PMid:7603574
-
Ma, Y., S. Pitson, T. Hercus, J. Murphy, A. Lopez and J. Woodcock, 2005. Sphingosine activates PKA type II by a novel cAMP-independent mechanism. J. Biol. Chem., 280: 26011-26017.
CrossRef PMid:15883165
- Mackintosh, C., 2004. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem. J., 381: 329-342.
CrossRef PMid:15167810 PMCid:PMC1133837
-
Masters, S.C., R. Subramanian, A. Truong, H. Yang, K. Fujii, H. Zhang and H. Fu, 2002. Survival promoting functions of 14-3-3 proteins. Biochem. Soc. T., 30: 360-365.
CrossRef PMid:12196095
- Megidish, T., J. Cooper, L. Zhang, H. Fu and S. Hakomori, 1998. A novel sphingosine-dependent protein kinase (SDK1) is associated with and specifically phosphorylates certain isoforms of 14-3-3 protein J. Biol. Chem., 273: 21834-21845.
CrossRef PMid:9705322
-
Mercedes, P.R., 2012. 14-3-3 Proteins are regulators of autophagy. Cells, 1: 754-773.
CrossRef PMid:24710529 PMCid:PMC3901138
- Mhawech, P., 2005. 14-3-3 proteins: An update. Cell Res., 15: 228-236.
CrossRef PMid:15857577
- Moore, B.W., V.J. Perez and F.D. Carlson, 1967. Physiological and Biochemical Aspects of Nervous Integration. Prentice-Hall Inc., The Marine Biological Laboratory, Woods Hole, MA, pp: 343-359.
PMid:4378269
- Moore, B.W., V.J. Perez and M. Gehring, 1968. Assay and regional distribution of a soluble protein characteristic of the nervous system. J. Neurochem., 15: 265-272.
CrossRef PMid:4966699
- Neal, C.L., J. Yao, W. Yang, X. Zhou, N. Nguyen, J. Lu, C. Danes, H. Guo, K. Lan, J. Ensor, W. Hittelman, M. Hung and D. Yu, 2009. 14-3-3zeta overexpression defines high risk for breast cancer recurrence and promotes cancer cell survival. Cancer Res., 69: 3425-3432.
CrossRef PMid:19318578 PMCid:PMC2671640
- Nikolai, N., V. Natalya, V. Maria, V. Irina, A. Alfred, I. Dmitrii and B. Nikolai, 2012. Monomeric 14-3-3? has a chaperone-like activity and is stabilized by phosphorylated HspB6. Biochemistry, 51: 6127-6138.
CrossRef PMid:22794279 PMCid:PMC3413243
- Obsil, T., R. Ghirlando, D.C. Klein, S. Ganguly and F. Dyda, 2001. Crystal structure of the 14-3-3zeta: Serotonin N-acetyltransferase complex. A role for scaffolding in enzyme regulation. Cell, 105: 257-267.
CrossRef
-
Obsilova, V., P. Herman, J. Vecer, M. Sulc, J. Teisinger and T. Obsil, 2004. 14-3-3zeta C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232. J. Biol. Chem., 279: 4531-4540.
CrossRef PMid:14613942
- Pallas, D.C., H. Fu, L.C. Haehnel, W. Weller, R.J. Collier and T.M. Roberts, 1994. Association of polyomavirus middle tumor antigen with 14-3-3 proteins. Science, 265: 535-537.
CrossRef PMid:8036498
- Petosa, C., S.C. Masters, L.A. Bankston, J. Pohl, B. Wang, H. Fu and R.C. Liddington, 1998. 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J. Biol. Chem., 273: 16305-16310.
CrossRef PMid:9632691
-
Powell, D.W., M.J. Rane, B.A. Joughin, R. Kalmukova, J.H. Hong, B. Tidor, W.L. Dean, W.M. Pierce, J.B. Klein, M.B. Yaffe and K.R. Mcleish, 2003. Proteomic identification of 14-3-3zeta as a mitogen-activated protein kinase-activated protein kinase 2 substrate: role in dimer formation and ligand binding. Mol. Cell Biol., 23: 5376-5387.
CrossRef PMid:12861023 PMCid:PMC165733
- Rittinger, K., J. Budamn, J. Xu, S. Volinia, L.C. Cantley, S.J. Smerdon, S.J. Gamblin and M.B. Yaffe, 1999. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol. Cell., 4: 153-166.
CrossRef
-
Rommel, C., G. Radziwill, J. Lovric, J. Noeldeke, T. Heinicke, D. Jones, A. Aitken and K. Moelling, 1996. Activated ras displaces 14-3-3 protein from the amino terminus of c-Raf-1. Oncogene, 12: 609-619.
PMid:8637718
- Samuel, T., H.O. Weber, P. Rauch, B. Verdoodt, J.T. Eppel, A. McShea, H. Hermeking and J.O. Funk, 2001. The G2/M regulator 14-3-3sigma prevents apoptosis through sequestration of bax. J. Biol. Chem., 276: 45201-45206.
CrossRef PMid:11574543
- Sancar, A., L.A. Lindsey-Boltz, K. Unsal-Kacmaz and S. Linn, 2004. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem., 73: 39-85.
CrossRef PMid:15189136
- Shen, Y.H., J. Godlewski, A. Bronisz, J. Zhu, M.J. Comb, J. Avruch and G. Tzivion, 2003. Significance of 14-3-3 selfdimerization for phosphorylation-dependent target binding. Mol. Biol. Cell., 14: 4721-4733.
CrossRef PMid:14551260 PMCid:PMC266786
-
Shimada, T., E. Alyson and K. Yamagata, 2013. Neuroprotective function of 14-3-3 proteins in neurodegeneration. BioMed. Res. Int., 2013: 11.
CrossRef PMid:24364034 PMCid:PMC3865737
- Silhan, J., V. Obsilova, J. Vecer, P. Herman, M. Sulc, J. Teisinger and T. Obsil, 2004. 14-3-3 protein C-terminal stretch occupies ligand binding groove and is displaced by phosphopeptide binding. J. Biol. Chem., 279: 49113-49119.
CrossRef PMid:15347690
-
Sluchanko, N., I. Chernik, A. Seit-Nebi, A. Pivovarova, D. Levitsky and N. Gusev, 2008. Effect of mutations mimicking phosphorylation on the structure and properties of human 14-3-3zeta. Arch. Biochem. Biophys., 477: 305-312.
CrossRef PMid:18559254
- Sluchanko, N.N. and N.B. Gusev, 2010. 14-3-3 proteins and regulation of cytoskeleton. Biochemistry (Moscow), 75: 1528-1546.
CrossRef
- Sunayama, J., F. Tsuruta, N. Masuyama and Y. Gotoh, 2005. JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3. J. Cell Biol., 170: 295-304.
CrossRef PMid:16009721 PMCid:PMC2171419
-
Toker, A., C. Ellis, L. Sellers and A. Aitken, 1990. Purification from sheep brain and sequence similarity to lipocortins and 14-3-3 protein. Eur. J. Biochem., 191: 421-429.
CrossRef PMid:2143472
- Tsuruta, F., J. Sunayama, Y. Mori, S. Hattori, S. Shimizu, Y. Tsujimoto, K. Yoshioka, N. Masuyama and Y. Gotoh, 2004. JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. Embo. J., 23: 1889-1899.
CrossRef PMid:15071501 PMCid:PMC394248
-
Tzivion, G. and J. Avruch, 2002. 14-3-3 proteins: Active cofactors in cellular regulation by serine/threonine phosphorylation. J. Biol. Chem., 277: 3061-3064.
CrossRef PMid:11709560
- Wilker, E. and M.B. Yaffe, 2004. 14-3-3 proteins: A focus on cancer and human disease. J. Mol. Cell Cardiol., 37: 633-642.
CrossRef PMid:15350836
- Wilker, E.W., R.A. Grant, S.C. Artim and M.B. Yaffe, 2005. A structural basis for 14-3-3sigma functional specificity. J. Biol. Chem., 280: 18891-18898.
CrossRef PMid:15731107
-
Won, J., D.Y. Kim, M. La, D. Kim, G. Meadows and C.O. Joe, 2003. Cleavage of 14-3-3 protein by caspase-3 facilitates bad interaction with Bcl-x(L) during apoptosis. J. Biol., 278: 19347-19351.
CrossRef
- Woodcock, J.M., J. Murphy, F.C. Stomski, M.C. Berndt and A.F. Lopez, 2003. The dimeric versus monomeric status of 14-3-3zeta is controlled by phosphorylation of Ser58 at the dimer interface. J. Biol. Chem., 278: 36323-36327.
CrossRef PMid:12865427
- Wurtele, M., C. Jelich-Ottmann, A. Wittinghofer and C. Oecking, 2003. Structural view of a fungal toxin acting on a 14-3-3 regulatory complex. Embo. J., 22: 987-994.
CrossRef PMid:12606564 PMCid:PMC150337
-
Xiao, B., S.J. Smerdon, D.H. Jones, G.G. Dodson, Y. Soneji, A. Aitken and S.J. Gamblin, 1995. Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature, 376: 188-191.
CrossRef PMid:7603573
-
Yaffe, M.B., 2002. How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett., 513: 53-57.
CrossRef
-
Zha, J., H. Harada, E. Yang, J. Jockel and S.J. Korsmeyer, 1996. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell, 87: 619-628.
CrossRef
-
Zhai, J., H. Lin, M. Shamim, W.W. Schlaepfer and R. Ca-ete-Soler, 2001. Identification of a novel interaction of 14-3-3 with p190RhoGEF. J. Biol. Chem., 276: 41318-41324.
CrossRef PMid:11533041
-
Zhang, L., J. Chen and H. Fu, 1999. Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins. Proc. Natl. Acad. Sci. USA, 96: 8511-8515.
CrossRef PMid:10411906 PMCid:PMC17547
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2041-0778
ISSN (Print): 2041-076X |
|
Information |
|
|
|
Sales & Services |
|
|
|