Research Article | OPEN ACCESS
Cloning and Expression Profiles of Myf5 Gene of Yak
1Yaqiu Lin, 2Runfeng Zhang, 4Ruiwen Li, 1Yucai Zheng and 3Jian Li
1College of Life Science and Technology, Southwest University for Nationalities, Sichuan
2College of Life Sciences, Hubei Normal University, Huangshi 435002
3College of Tibetan Plateau Research, Southwest University for Nationalities, Chengdu 610041
4Reproductive and Endocrine Laboratory, Chengdu Woman-Child Central Hospital,
Chengdu 610091, China
Current Research Journal of Biological Sciences 2015 1:11-17
Received: September ‎30, ‎2014 | Accepted: November ‎3, ‎2014 | Published: January 20, 2015
Abstract
To reveal the sequence characteristic and expression pattern of Myf5 gene in Jiulong yaks (Bos grunniens), a full-length cDNA of Myf5 was cloned from yak muscle tisssue by RT-PCR. The cDNA obtained was 821bp nucleotide (nt) long with an ORF of 768 bp which encoding 255 amino acids. Compared with cattle, sheep, pig, horse, human, pygmy chimpanzee, mouse, rat and dog, the homology of amino acid sequences were higher (89-9%), but lower in Zebrafish (60%). SQ RT-PCR analysis showed that Myf5 gene expression was observed only in longissimus muscle, but not be detected in heart, liver, kidney, spleen and adipose tissues. The expression level of Myf5 gene in longissium muscle of 0.5 and over 9 years old yaks was significantly higher than those of 3.5-5.5 years old yaks (p<0.05). These results suggest that Myf5 may play an important role in the regulation of muscle growth and development of yak.
Keywords:
Clone, Myf5, temporal expression, tissue expression, yak,
References
- Bhuiyan, M.S.A., N.K. Kim, Y.M. Cho, D. Yoon, K.S. Kim, J.T. Jeon and J.H. Lee, 2009. Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle. Livest. Sci., 126(1-3): 292-297.
CrossRef -
Buckingham, M., 1992. Making muscle in animals. Trends Genet., 8: 144-149.
CrossRef - Daubas, P., S. Tajbakhsh, J. Hadchouel, M. Primig and M. Buckingham, 2000. Myf5 is a novel early axonal marker in the mouse brain and is subjected to post-transcriptional regulation in neurons. Development, 127(2): 319-331.
PMid:10603349 -
Dauncey, M.J. and R.S. Gilmour, 1996. Regulatory factors in the control of muscle development. Proc. Nutr. Soc., 55(1B): 543-559.
CrossRef PMid:8832818 - Francetic, T. and Q. Li, 2011. Skeletal myogenesis and Myf5 activation. Transcription, 2(3): 109-114.
CrossRef PMid:21922054 PMCid:PMC3173648 -
Hall, T., 2001. Bioedit Version 5.0.6. Department of Microbiology, North Carolina State University. Retrieved from: http://www.mbio.ncsu.edu/Bio Edit/bioedit.html.
- Hasty, P., A. Bradley, J.H. Morris, D.G. Edmondson, J.M. Venuti, E.N. Olson and W.H. Klein, 1993. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature, 364: 501-506.
CrossRef PMid:8393145 -
Hughes, S.M. and S. Schiaffino, 1999. Control of muscle fiber size: A crucal fact or in ageing. Acta Physiol. Scand., 167(4): 307-312.
CrossRef - Johansen, K.A. and K. Overturf, 2005. Sequence, conservation and quantitative expression of rainbow trout Myf5. Comp. Biochem. Phys. B., 140(4): 533-541.
CrossRef PMid:15763508 -
Kablar, B., K. Krastel, C. Ying, S.J. Tapscott, D.J. Goldhamer and M.A. Rudnicki, 1999. Myogenic determination occurs independently in somites and limb buds. Dev. Biol., 206(2): 219-231.
CrossRef PMid:9986734 - Li, C., J. Basarab, W.M. Snelling, B. Benkel, B. Murdoch and S.S. Moore, 2002. The identification of common haplotypes on bovine chromosome 5 within commercial lines of Bos taurus and their associations with growth traits. J. Anim. Sci., 80: 1187-1194.
CrossRef PMid:12019605 -
Li, C., J. Basarab, W.M. Snelling, B. Benkel, B. Murdoch, C. Hansen and S.S. Moore, 2004. Assessment of positional candidate genes myf5 and igf1 for growth on bovine chromosome 5 in commercial lines of Bos taurus. J. Anim. Sic., 82: 1-7.
CrossRef - Livak, K.J. and T.D. Schmittgen, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-??Ct method. Methods, 25: 402-408.
CrossRef PMid:11846609 -
Miner, J.H., J.B. Miller and B.J. Wold, 1992. Skeletal muscle phenotypes initiated by ectopic MyoD in transgenic mouse heart. Development, 114(4): 853-860.
PMid:1618148 - Muroya, S., I. Nakajima and K. Chikuni, 2002. Related expression of MyoD and Myf5 with myosin heavy chain isoform types in bovine adult skeletal muscles. Zool. Sci., 19(7): 755-761.
CrossRef PMid:12149576 - Patapoutian, A., J.K. Yoon, J.H. Miner, S. Wang, K. Stark and B. Wold, 1995. Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome. Development, 121(10): 3347-3358.
PMid:7588068 - Petersen, T.N., S. Brunak, G. Heijne and H. Nielsen, 2011. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Method, 8(10): 785-786.
CrossRef PMid:21959131 - Rescan, P.Y., 2001. Regulation and functions of myogenic regulatory factors in lower vertebrates. Comp. Biochem. Physiol. Part B., 130(1): 1-12.
CrossRef - Robakowska-Hyzorek, D., J. Oprzadek, B. Zelazowska, R. Olbromski and L. Zwierzchowski 2010. Effect of the g.-723G?T polymorphism in the bovine myogenic factor 5 (Myf5) gene promoter region on gene transcript level in the longissimus dorsi muscle and on meat traits of Polish holstein-friesian cattle. Biochem. Genet., 48(5-6): 450-464.
CrossRef PMid:20127165 - Rudnicki, M.A. and R. Jaenisch, 1995. The MyoD family of transcription factors and skeletal myogenesis. BioEssays, 17(3): 203-209.
CrossRef PMid:7748174 -
Tajbakhsh, S., D. Rocancourt and M. Buckingham, 1996. Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature, 384: 266-270.
CrossRef PMid:8918877 -
Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar, 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 30(12): 2725-2729.
CrossRef PMid:24132122 PMCid:PMC3840312 - Te Pas, M.F. and A. Soumillion, 2001. The use of physiologic and functional genomic information of the determination of skeletal muscle mass in livestock breeding strategies to enhance meat production. Curr. Genom., 2: 285-304.
CrossRef - Te Pas, M.F.W., I. Hulsegge, A. Coster, M.H. Pool, H.H. Heuven and L.L.G. Janss, 2007. Biochemical pathways analysis of microarray results: Regulation of myogenesis in pigs. BMC Dev. Biol., 7: 66-80.
CrossRef PMid:17567520 PMCid:PMC1919358 - Timmons, J.A., K. Wennmalm, O. Larsson, T.B. Walden, T. Lassmann, N. Petrovic, D.L. Hamilton, R.E. Gimeno, C. Wahlestedt, K. Baar, J. Nedergaard and B. Cannon, 2007. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. P. Natl. Acad. Sci. USA, 104(11): 4401-4406.
CrossRef PMid:17360536 PMCid:PMC1810328 -
Ujan, J.A., L.S. Zan, S.A. Ujan and H.B. Wang, 2011. Association between polymorphism of Myf-5 gene with meat quality traits in indigenous Chinese cattle breeds. Proceeding of the International Conference on Asia Agriculture and Animal (IPCBEE.2011), 13: 50-55.
- Wang, Y., P.N. Schnegelsberg, J. Dausman and R. Jaenisch, 1996. Functional redundancy of the muscle-specific transcription factors Myf5 and myogenin. Nature, 379: 823-825.
CrossRef PMid:8587605 - Wiener, G., J.L. Han and R.J. Long, 2003. The Yak. 2nd Edn., FAO, Rome, Italy.
-
Wright, W.E., D.A. Sassoon and V.K. Lin Myogenin, 1989. A factor regulating myogenesis, has a domain homologous to MyoD. Cell, 56(4): 607-617.
CrossRef - Wyzykowski, J.C., T.I. Winata, N. Mitin, E.J. Taparowsky and S.F. Konieczny, 2002. Identification of novel MyoD gene targets in proliferating myogenic stem cells. Mol. Cell Biol., 22(17): 6199-6208.
CrossRef PMid:12167713 PMCid:PMC133998 -
Ye, H.Q., S.L. Chen and J.Y. Xu, 2007. Molecular cloning and characterization of the Myf5 gene in sea perch (Lateolabrax japonicus). Dev. Biol., 312(1): 13-28.
CrossRef - Zhang, R.F., H. Chen, C.Z. Lei, C.L. Zhang, X.Y. Lan, Y.D. Zhang, H.J. Zhang, B. Bao, H. Niu and X.Z. Wang, 2007. Association between polymorphisms of MSTN and MYF5 genes and growth traits in three Chinese cattle breeds. Asian-Aust. J. Anim. Sci., 20(12): 1798-1804.
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2041-0778
ISSN (Print): 2041-076X |
|
Information |
|
|
|
Sales & Services |
|
|
|