Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Current Research Journal of Biological Sciences


Itaconic Acid Production by Microorganisms: A Review

Helia Hajian and Wan Mohtar Wan Yusoff
School of Bioscience and Biotechnology, Faculty of Science and Technologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Current Research Journal of Biological Sciences  2015  2:37-42
http://dx.doi.org/10.19026/crjbs.7.5205  |  © The Author(s) 2015
Received: September ‎29, ‎2014  |  Accepted: November ‎26, ‎2014  |  Published: April 20, 2015

Abstract

Itaconic acid $(C_5 H_6 O_4)$ is an organic acid with unique structure and characteristics. In order to promote the bio-based economy, the US-Department of Energy (DOE) assigned a “top-12” of platform chemicals, which include numerous of organic acids. In particular di-carboxylic acids, like itaconic acid, can be used as monomers for bio-polymers. Thus the need to produce itaconic acid attracts much attention. The favored production process is fermentation of carbohydrates by fungi and Aspergillus terreus is the mostly frequently employed commercial producer of itaconic acid. This review reports the current status of use of microorganisms in enhancing productivity.

Keywords:

Aspergillus, fermentation, itaconic acid, production,


References

  1. Abraham, M. and S.B. Sawant, 1990. Hydrodynamics and mass transfer characteristics of packed bubble columns. Chem. Eng. J., 43: 95-105.
    CrossRef    
  2. Amina, M.A.E.I., O.K. Muinat, B.O. Mutiat, A.O.K.E. Mushaffa and O.A. Azeezat, 2013. Production of itaconic acid from jatropha curcas seed cake by aspergillus terreus. Not. Sci. Biol., 5(1).
  3. Aytac, K., B.O. Zumrut and B. Ufuk, 2014. Xylanase and itaconic acid production by Aspergillus terreus NRRL 1960 within a biorefinery concept. Ann. Microbiol., 64: 75-84.
    CrossRef    
  4. Bentley, R. and C.P. Thiessen, 1957. Biosynthesis of itaconic acid in Aspergillusterreus. I. Tracer studies with C14-labeled substrates. J. Biol. Chem., 226: 673-687.
    PMid:13438853    
  5. Billington, R.H., 1969. Versatile itaconic acid and its derivatives. Chem. Process., 15: 8-30.
  6. Boekhout, T. and J.W. Fell, 1998. Pseudozyma Bandoni Emend. Boekhout and a Comparison with the Yeast State of Ustilago Maydis (De Candolle) CORDA. In: Kurtzman, C.P. and J.W. Fell (Eds.), The Yeasts: A Taxonomic Study. Elsevier Science Publishers, NJ, pp: 790-797.
    CrossRef    
  7. Bonnarme, P., B. Gillet, A.M. Sepulchre, C. Role, J.C. Beloeil and C. Ducrocq, 1995. Itaconate biosynthesis in Aspergillusterreus. J. Bacteriol., 177: 3573-3578.
    CrossRef    PMid:7768868 PMCid:PMC177064    
  8. Crisp, S. and A.D. Wilson, 1980. Cements. US Patent 4,222,920. Mat'l Res Dev Co., England.
  9. Culbertson, B.M., 2006. New polymeric materials for use in glassionomer cements. J. Dent., 34: 556-565.
    CrossRef    PMid:16574300    
  10. Dwiarti, L., M. Otsuka, S. Miura, M. Yaguchi and M. Okabe, 2006. Itaconic acid production using sago starch hydrolysate by Aspergillus terreus TN484-M1. Bioresour. Technol., 98(17): 3329-3337.
    CrossRef    PMid:17451943    
  11. Horitsu, H., Y. Takahashi, J. Tsuda, K. Kawai and Y. Kawano, 1983. Production of itaconic 426 acid by Aspergillus terreus immobilized in polyacrylamide gels. Eur. J. Appl. Microbiol. Biotechnol., 18: 358-360.
    CrossRef    
  12. Jaklitsch, M., P. Kubicek, C. Scrutton, C. London, C.H. Road and W. London, 1991. The subcellular organization of itaconate biosynthesis Aspergillus terreus. J. En. Microbiol., 137: 533-539.
    CrossRef    
  13. Jarry, A. and Y. Seraudie, 1995. Production of Itaconic Acid by Fermentation. US Patent No. 5.457.040.
  14. Jarry, A. and Y. Seraudie, 1997. Production of Itaconic Acid by Fermentation. US Patent No. 5.637.485.
  15. Jin, H., H. Lei, L. Jianping, X. Zhinan and C. Peilin, 2010. Organic chemicals from bioprocesses in China. Adv. Biochem. Eng. Biotechnol., 122: 43-71.
    CrossRef    PMid:20549466    
  16. Kanamasa, S., L. Dwiarti, M. Okabe and E. Park, 2008. Cloning and functional characterization of the cis aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl. Microbiol. Biotechnol., 80: 223-229.
    CrossRef    PMid:18584171    
  17. Kautola, H., M. Vahvaselka, Y.Y. Linko and P. Linko, 1985. Itaconic acid production by immobilized Aspergillus terreus from xylose and glucose. Biotechnol. Lett., 7: 167-172.
    CrossRef    
  18. Kautola, H., N. Vassilev and Y.Y. Linko, 1990. Continuous itaconic acid production by immobilized biocatalysts. J. Biotechnol., 13: 315-323.
    CrossRef    
  19. Kautola, H., W. Rymowicz, Y.Y. Linko and P. Linko, 1991. Itaconic acid production by immobilized Aspergillus terreus with varied metal additions. Appl. Microbiol. Biotechnol., 35: 154-158.
    CrossRef    
  20. Kin, R., T. Sai and S. So, 1998. Itaconate copolymer with quadratic nonlinear optical characteristic. JP Patent No. 10,293,331.
  21. Laura, V.D.S., V. Marloes, L. Marieke, V.D.B. Willy, S. Tom, C. Jan, V.D.M. Ingrid, K. Andries and H.D.G. Leo, 2014. Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microb. Cell Fact., 13: 11.
    CrossRef    PMid:24438100 PMCid:PMC3898256    
  22. Li, A., N. van Luijk, M. ter Beek, M. Caspers, P. Punt and M. van der Werf, 2011. A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet. Biol., 3(6): 602-611.
    CrossRef    PMid:21324422    
  23. Li, A., N. Pfelzer, R. Zuijderwijk, A. Brickwedde, C. van Zeijl and P. Punt, 2013. Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger. Appl. Microbiol. Biotechnol., 9: 3901-3911.
    CrossRef    PMid:23397482    
  24. Lin, Y.H., Y.F. Li, M.C. Huang and Y.C. Tsai, 2004. Intracellular expression of Vitreoscilla hemoglobin in Aspergillus terreus to alleviate the effect of a short break in aeration during culture. Biotechnol. Lett., 26: 1067-1072.
    CrossRef    PMid:15218381    
  25. Lockwood, L.B., 1979. Production of Organic Acids by Fermentation. 2nd Edn., In: Peppler, H.J. and D. Perlman (Eds.), Microbial Technology. Academic Press, 1: 355-387.
    CrossRef    
  26. Mattey, M., 1992. The production of organic acids. Crit. Rev. Biotechnol., 12: 87-132.
    CrossRef    PMid:1733523    
  27. Matthias, G.S., L.B. Marzena, M. Diethard and S. Michael, 2013. Biochemistry of microbial itaconic acid production. Front. Microbiol., 4(23).
  28. Menon, V. and M. Rao, 2012. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals and biorefinery concept. Prog. Energ. Combust., 38: 522-550.
    CrossRef    
  29. Meyer, V., 2008. Genetic engineering of filamentous fungi: Progress, obstacles and future trends. Biotechnol. Adv., 26: 177-185.
    CrossRef    PMid:18201856    
  30. Mitsuyasu, O., L. Dwiarti, K. Shin and P.Y. Enoch, 2009. Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl. Microbiol. Biotechnol., 84: 597-606.
    CrossRef    PMid:19629471    
  31. Moser, A., 1991. Tubular bioreactor: Case study of bioreactor performance for industrial production and scientific research. Biotechnol. Bioeng., 37: 1054-1065.
    CrossRef    PMid:18597337    
  32. Moshaverinia, A., N. Roohpour, J.A. Darr and I.U. Rehman, 2009. Synthesis and characterization of a novel N-vinylcarrolactam-containing acrylic acid terpolymer for application in glass-ionomer dental cements. Acta Biomater., 5: 2101-2108.
    CrossRef    
  33. Nagaraja, U.P. and G. Kishore, 2005. Glass ionomer cement: The different generations. Trends Biomater. Artif. Organs., 18(2): 158-165.
  34. Naihu, J. and S.S. Wang, 1986. Continuous itaconic acid production by Aspergillus terreus immobilized in a porous disk bioreactor. Appl. Microbiol. Biotechnol., 23: 311-314.
  35. Okabe, M., D. Lies, S. Kanamasa and E. Park, 2009. Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl. Microbiol. Biotechnol., 84: 597-606.
    CrossRef    PMid:19629471    
  36. Park, Y., M. Itida, N. Ohta and M. Okabe, 1994. Itaconic acid production using an air-lift bioreactor in repeated batch culture of Aspergillus terreus. J. Ferment. Bioeng., 77: 329-331.
    CrossRef    
  37. Ramesh, C. and R.C. Sastry, 2011. Synthesis of itaconic acid using Ustilago mydis Can. J. Chem. Eng. Technol., 2(7).
  38. Reddy, C.S. and R.P. Singh, 2002. Enhanced production of itaconic acid from corn starch and market refuse fruits by genetically manipulated Aspergillus terreus SKR10. Bioresour. Technol., 85: 69-71.
    CrossRef    
  39. Roehr, M. and C.P. Kubicek, 1996. Further Organic Acids. 2nd Edn., In: Roehr, M. (Ed.), Biotechnology: Products of Primary Metabolism. VCH Verlagsgesellschaft mbH, 6: 364-379.
    CrossRef    
  40. Shin, W.S., Y.H. Kim, Y.S. Jeong, P. Chulhwan, K. Sangyong, L. Dohoon, L. Jongdae and G.T. Chun, 2009. Enhanced production of itaconic acid by transformed fungal cells of Aspergillus terreus harboring Vitreoscilla Hemoglobin Gene. J. Biosci. Bioeng., 108: S114-S134.
    CrossRef    
  41. Siegel, M.H., J.C. Merchuk and K. Schugerl, 1986. Air-lift reactor analysis: Interrelationships between riser, downcomer and gas-liquid separator behavior, including gas recirculation effects. AIChE J., 32: 1585-1596.
    CrossRef    
  42. Strelko, C.L., W. Lu, F.J. Dufort, T.N. Seyfried, T.C. Chiles, J.D. Rabinowitz et al., 2011. Itaconic acid is a mammalian metabolite induced during macrophage activation. J. Am. Chem. Soc., 133: 16386-16389.
    CrossRef    PMid:21919507 PMCid:PMC3216473    
  43. Tabuchi, T., T. Sugisawa, T. Ishidori, T. Nakahara and J. Sugiyama, 1981. Itaconic acid fermentation by a east belonging to the genus Candida. Agric. Biol. Chem., 45: 472-479.
    CrossRef    
  44. Tobias, K., M. Sofia, J. Gernot, M.G. Philipp, D.D.M. Pablo and B. Jochen, 2012. Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microbial. Cell Fact., 11: 43.
    CrossRef    PMid:22480369 PMCid:PMC3364905    
  45. Träger, M., G.N. Qazi, U. Onken and C.L. Chopra, 1989. Comparison of airlift and stirred reactors for fermentation with Aspergillus niger. J. Ferment. Bioeng., 68: 112-116.
    CrossRef    
  46. Tsai, Y., M. Huang, S. Lin and Y. Su, 2001. Method for the Production of Itaconic Acid Using Aspergillus terreus Solid State Fermentation. US Patent No. 6,171,831.
  47. Tsao, G.T., N.J. Cao, J. Du and C.S. Gong, 1999. Production of multifunctional organic acids from renewable resources. Adv. Biochem. Eng. Biotechnol., 65: 243-280.
    CrossRef    PMid:10533437    
  48. Van der Werf, M., M. Caspers and M. Petrus, 2009. Production of itaconic acid. EP Patent No. 017344 A1.
  49. Voll, A., T. Klement, G. Gerhards, J. Büchs and W. Marquardt, 2012. Metabolic modeling of itaconic acid fermentation with Ustilago maydis. Chem. Eng. Trans., 27: 367-372.
  50. William, E.L., P.K. Cletus and M.K. Tsung, 2006. Production of itaconic acid by Pseudozyma Antarctica NRRL Y-7808 under nitrogen-limited growth conditions. Enzyme Microb. Tech., 39: 824-827.
    CrossRef    
  51. Willke, T. and K.D. Vorlop, 2001. Biotechnological production of itaconic acid. Appl. Microbiol. Biotechnol., 56: 289-295.
    CrossRef    PMid:11548996    
  52. Winskill, N., 1983. Tricarboxylic acid cycle activity in relation to itaconic acid biosynthesis by Aspergillus terreus. J. Gen. Microbiol., 129: 2877-2883.
  53. Yahiro, K., T. Takahama, Y. Park and M. Okabe, 1995. Breeding of Aspergillus terreus Mutant TN-484 for an itaconic acid production with high yield. J. Ferm. Bioeng., 79: 506-508.
    CrossRef    
  54. Yoshida, F., 1988. Bubble column research in Japan. Chem. Eng. Technol., 11: 205-212.
    CrossRef    
  55. Zhang, L., Y. Li, Z. Wang, Y. Xia, W. Chen and K. Tang, 2007. Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol. Adv., 25: 123-136.
    CrossRef    PMid:17184955    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2041-0778
ISSN (Print):   2041-076X
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved