Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Current Research Journal of Biological Sciences


Biological Aging: From the Boolean Networks, To the Geometric Phase

J. Barragan and S. Sanchez
Department of Histology and Cell Biology, Instituto Universitario del Gran Rosario, Corrientes 1254, Rosario, Argentina
Current Research Journal of Biological Sciences  2015  3:47-52
http://dx.doi.org/10.19026/crjbs.7.5207  |  © The Author(s) 2015
Received: December ‎26, ‎2014  |  Accepted: January ‎27, ‎2015  |  Published: July 20, 2015

Abstract

The objective of the study is to verify the possible relationship of the basal metabolic rate according to dry weight (BMR/dry kg.), with the capacity to generate body mass (estimated as delta dry weight or DDW) and with generated body mass (estimated as dry weight or DW). The findings are analyzed within a theoretical framework of random Boolean networks and the concept of the geometric phase applied to living beings considered as systems. No significant relationship was found between the BMR/dry kg. and the DDW, so aging cannot be attributed to the continued declining of the BMR/dry kg. In contrast, a high correlation between the BMR/dry kg. and the DW was found. Such a correlation could contribute to the explanation regarding the gradual loss of homeostasis that occurs in aging. Random Boolean networks of the NK2 type may help explain the origin of homeostasis and self-organization, but they cannot explain the gradual loss during the process of aging. Applying the concept of the geometric phase could contribute to the explanation since cycle after cycle the variables do not regain the original values and the system declines.

Keywords:

Body mass, basal metabolism rate, homeostasis, self-organization,


References

  1. Anandan, J., 1992. The geometric phase. Nature, 360(6402): 307-313.
    CrossRef    
  2. Andreu, G.P., 2003.Consideraciones generals sobre algunas teorias del envejecimiento. Rev. Cubana Invest Biomed., 22(1).
  3. Barragán, J. and S. Sánchez, 2014. Principio de Margalef y Ley de Kleiber: Su consistencia con la segunda ley de la termodinámica y la deriva natural Investigación y Ciencia [en linea] 2012, 20 (Enero-Abril): [Fecha de consulta: 18 de octubre de 2014] Retreieved form : http://www.redalyc.org/articulo. oa?id = 67424408003, ISSN: 1665-4412.
    Direct Link
  4. Barragán, J. and S. Sánchez, 2013. Aging: The evolution of body weight and its relation to the complexity of organism. Current Res. J. Biol. Sci., 5(6): 262-265.
    CrossRef    
  5. Berry, M., 1988. The geometric phase (cyclic adiabatic change in quantum systems)). Sci. Amer., 259: 46-52.
    CrossRef    
  6. Berry, M., 1989. La fase geométrica. Investigación y Ciencia. Febrero, No. 149, Retreieved form: http://www.investigacionyciencia.es/revistas/investigacion-y-ciencia/numeros/1989/2/la-fase-geomtrica-6281.
    Direct Link
  7. Blagosklonny, M.V., 2010. Revisiting the antagonistic pleiotropy theory of aging. Cell Cycle, 9(16): 3151-3156.
    CrossRef    PMid:20724817    
  8. Brown, F.A., 1959. The rhythmic nature of animals and plants. Amer. Sci., pp: 147-168.
  9. Campisi, J. and J. Sedivy, 2009. How does proliferative homeostasis change with age? What causes it and how does it contribute to aging? J. Gerontol. Series A, Biol. Sci. Med. Sci., 64(2): 164-166.
    CrossRef    PMid:19228778 PMCid:PMC2655008    
  10. Carollo, A.N.G.E.L.O., I. Fuentes-Guridi, M.F. Santos and V. Vedral, 2003. Geometric phase in open systems. Phys. Rev. Lett., 90(16): 160402.
    CrossRef    PMid:12731961    
  11. Chen, C.C., Y.T. Chen and M.C. Chen, 2007. An aging theory for event life-cycle modeling. IEEE T. Syst. Man Cybernetics, Part A: Syst. Hum., 37(2): 237-248.
    CrossRef    
  12. Ekstig, B., 2010. Complexity and evolution: A study of the growth of complexity in organic and cultural evolution. Foundat. Sci., 15(3): 263-278.
    CrossRef    
  13. Furtado, C., F. Moraes and A.M. de M Carvalho, 2008. Geometric phases in graphitic cones. Phys. Lett. A, 372(32): 5368-5371.
    CrossRef    
  14. Gaziev, A.I., S. Abdullaev and A. Podlutsky, 2014. Mitochondrial function and mitochondrial DNA maintenance with advancing age. Biogerontology, 15: 417-438.
    CrossRef    PMid:25015781    
  15. Galliot, B., 2012. Hydra, a fruitful model system for 270 years. Int. J. Develop. Biol., 56: 411-423.
    CrossRef    PMid:22855328    
  16. Gell-Mann, M., 1997.The simple and the complex. In: David S. Alberts and Thomas J, Czerwinski (Eds.), Complexity, Global Politics and National Security, Washington, DC.
  17. Gershenson, C., 2004. Introduction to Random Boolean Networks. Centrum Leo Apostel, Vrije Universiteit Brussel. Krijgskundestraat 33 B-1160 Brussel, Belgium cgershen@vub.ac.be. Retreieved form: http://homepages.vub.ac.be/˜cgershen (Submitted on 2 Aug 2004 (v1), last revised 12 Aug 2004 (this version, v3) [Internet] Retreieved form: http://arxiv.org/pdf/nlin/0408006v3.pdf.
    Direct Link
  18. Graudenzi, A., R, Serra, M. Villani, C. Damiani, A. Colacci and S.A. Kauffman, 2011. Dynamical properties of a Boolean model of gene regulatory network with memory. J. Computational Biol., 18(10): 1291-1303.
    CrossRef    PMid:21214342    
  19. Gould, S.J., 1994. The Evolution of Life on Earth, Scientific American. Retrieved form: http: //palaeos.com/cosmic_evolution/emergence.html. (Accessed on: October, 1994).
    Direct Link
  20. Hameroff, S.R., 2001. Consciousness, the brain and space-time geometry. Annals New York Acad. Sci., 929: 74-104.
    CrossRef    PMid:11349432    
  21. Ikegami, T. and K. Suzuki, 2008. From a homeostatic to a homeodynamicself. BioSystems, 91(2): 388-400.
    CrossRef    PMid:17765391    
  22. Kauffman, S., R.K. Logan, R. Este, R. Goebel, D. Hobill and I. Shmulevich, 2008. Propagating organization: An enquiry. Biol. Philosophy, 23(1): 27-45.
    CrossRef    
  23. Koga, H., S. Kaushik and A.M. Cuervo, 2011. Protein homeostasis and aging: The importance of exquisite quality control. Ageing Res. Rev., 10(2): 205-215.
    CrossRef    PMid:20152936 PMCid:PMC2888802    
  24. Lauri, A., G. Pompilio and M.C. Capogrossi, 2014. The mitochondrial genome in aging and senescence. Aging Res. Rev., 18: 1-15.
    CrossRef    PMid:25042573    
  25. Lemmer, B., 2014. Circadian Rhythms. Encyclopedia of Psychopharmacology 2014, pp: 1-7.
    CrossRef    
  26. Makarieva, A.M., V.G. Gorshkov, B.L. Li, S.L. Chown, P.B. Reich and V.M. Gavrilov, 2008. Mean mass-specific metabolic rates are strikingly similar across life's major domains: Evidence for life's metabolic optimum. Proceed. National Acad. Sci., 105(44): 16994-16999.
    CrossRef    PMid:18952839 PMCid:PMC2572558    
  27. Marcer, P., E. Mitchell, P. Rowlands and W. Schempp, 2004. Zenergy: The "Phaseonium" of dark energy that fuels the natural structures of the universe. Int. J. Comput. Anticipatory Syst., 16(2004): 189-202.
  28. Marcer, P. and W. Schempp, 1998. The brain as a conscious system. Int. J. General Syst., 27(1-3): 131-248.
    CrossRef    
  29. Marcer, P. and E. Mitchell, 2001. What is Consciousness. The Physical Nature of Consciousness, John Benjamins, Amsterdam-Philadelphia, pp: 145-174.
    CrossRef    
  30. Margalef, R., 2002. Teoría de los sistemas ecológicos. 2nd Edn., Publicaciones Universitat de Barcelona. Barcelona. Espa-a. pp: 290.
    PMid:12474341    
  31. Margalef, R., 1995. La ecología, entre la vida real y la física teórica. Scient. Am., 225: 66-73.
  32. Nebel, A. and T.C. Bosch, 2012. Evolution of human longevity: Lessons from Hydra. Aging (Albany NY), 4(11): 730.
    CrossRef    PMid:23241851 PMCid:PMC3560441    
  33. Ribeiro, A.S., S.A. Kauffman, J. Lloyd-Price, B. Samuelsson and J.E. Socolar, 2008. Mutual information in random Boolean models of regulatory networks. Phys. Rev. E., 77(1): 011901.
    CrossRef    PMid:18351870    
  34. Rattan, S.I., 2006. Theories of biological aging: Genes, proteins and free radicals. Free Radical Res., 40(12): 1230-1238.
    CrossRef    PMid:17090411    
  35. Sánchez, S. and J. Barragán, 2011. Metabolically active weight: Between Kleiber`s law and the second law of thermodinamics. RAEM, 48(3): 136-142.
  36. Sánchez, S. and J. Barragán, 2010. Evolución del peso y el metabolismo basal en varones: su relación con el principio de Margalef: Análisis de tablas. Aleph Zero, No. 58. México. 2010. Retreieved form: http://hosting.udlap.mx/profesores/miguela.mendez/alephzero/index.html.
  37. Schaible, R., M. Sussman and B.H. Kramer, 2014. Aging and Potential for Self-Renewal: Hydra Living in the Age of Aging-A Mini-Review Max Planck Institute for Demographic Research, Rostock, Germany [Internet] disponible en. Retrieved form: http://europepmc.org/abstract/med/25012456.
    Direct Link
  38. Schaible, R. and M. Sussman, 2013. FOXO in aging: Did evolutionary diversification of FOXO function distract it from prolonging life? BioEssays, 35(12): 1101-1110.
    CrossRef    PMid:24142536    
  39. Segev, M., R. Solomon and A. Yariv, 1992.Manifestation of Berry's phase in image-bearing optical beams. Phys. Rev. Lett., 69(4): 590.
    CrossRef    PMid:10046980    
  40. Shmulevich, I., S.A. Kauffman and M. Aldana, 2005. Eukaryotic cells are dynamically ordered or critical but not chaotic. Proceedings of the National Academy of Sciences of the United States of America, 102(38): 13439-13444.
    CrossRef    PMid:16155121 PMCid:PMC1224670    
  41. Strihler, B., 2012. Times, cells and aging. Elsevier. Pag., pp: 103-104.
  42. Von Bertalanffy, L., 1956. General system theory. General Syst., 1(1): 11-17, 120-134.
  43. Von Bertalanffy, L., 1972. The model of open systems: Beyond molecular biology. In: Breck, A.D. and et al., (Eds.), Biology, history and natural philosophy, plenum press, new York, pp: 17-30.
    CrossRef    
  44. Yoshida, K., T. Fujisawa, J.S. Hwang, K. Ikeo and T. Gojobori, 2006.Degeneration after sexual differentiation in hydra and its relevance to the evolution of aging. Gene, 385: 64-70.
    CrossRef    PMid:17011141    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2041-0778
ISSN (Print):   2041-076X
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved