Research Article | OPEN ACCESS
Developments in Bio-hydrogen Production from Algae: A Review
N. Saifuddin and P. Priatharsini
Centre for Renewable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia
Research Journal of Applied Sciences, Engineering and Technology 2016 9:968-982
Received: December 9, 2015 | Accepted: February 10, 2016 | Published: May 05, 2016
Abstract
Diversification of biofuel sources has become an important energy issue. Bio-hydrogen production from microalgae has received much attention recently. However, commercial production of microalgae biofuels including bio-hydrogen is still not feasible due to the low biomass concentration and costly downstream processes. It has been reported that exposing some species of algae to environmental stress, e.g., by depriving the algae of sulfur in light, it is possible to produce significant amounts of hydrogen gas. However, this technology is still in its infancy and there is significant potential for technology development and improvement at every level. This review discusses the biological hydrogen production by microalgae (direct bio-photolysis, indirect bio-photolysis, photo fermentation and dark fermentation) and optimization of key parameters to enhance hydrogen production. The effects of different stress reactions on production of the valuable components are described. This knowledge can be used to evaluate the possibilities for producing hydrogen and high value products efficiently in the same process. Further studies of these topics may result in a sustainable process where solar energy can be converted into hydrogen in an integrated manner, where production efficiencies are sufficient for an economic exploitation of algal technology using algal stress reactions.
Keywords:
Algal stress reactions, bio-hydrogen, hydrogenase, microalgae, microwave irradiation,
References
-
Akkerman, I., M. Janssen, J. Rocha and R.H. Wijffels, 2002. Photobiological hydrogen production: Photochemical efficiency and bioreactor design. Int. J. Hydrogen Energ., 27(11-12): 1195-1208.
CrossRef -
Allakhverdiev, S., V. Thavasi, V.D. Kreslavski, S.K. Zharmukhamedov, V.V. Klimov, S. Ramakrishna, D.A. Los, M. Mimuro, H. Nishihara and R. Carpentier, 2010. Photosynthetic hydrogen production. J. Photoch. Photobio. C, 11(2-3): 101-113.
CrossRef -
Asadi, A., R.A. Khavari-Nejad, N. Soltani, F. Najafi and A. Molaie-Rad, 2011. Physiological variability in cyanobacterium Phormidium sp Kutzing ISC31 (Oscillatoriales) as response to varied microwave intensities. Afr. J. Agric. Res., 6(7): 1673-1681.
-
Azwar, M.Y., M.A. Hussain and A.K. Abdul-Wahab, 2014. Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review. Renew. Sust. Energ. Rev., 31: 158-173.
CrossRef -
Bakonyi, P., B. Borza, K. Orlovits, V. Simon, N. Nemestothy and K. Bélafi-Bakó, 2014. Fermentative hydrogen production by conventionally and unconventionally heat pretreated seed cultures: A comparative assessment. Int. J. Hydrogen Energ., 39(11): 5589-5596.
CrossRef -
Banik, S., S. Bandopadhyay and S. Ganguly, 2003. Bioeffects of microwave--a brief review. Bioresource Technol., 87(2): 155-159.
CrossRef -
Beckmann, J., F. Lehr, G. Finazzi, B. Hankamer, C. Posten, L. Wobbe and O. Kruse, 2009. Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J. Biotechnol., 142(1): 70-77.
CrossRef PMid:19480949 -
Burrows, E.H., F.W.R. Chaplen and R.L. Ely, 2008. Optimization of media nutrient composition for increased photofermentative hydrogen production by Synechocystis sp. PCC 6803. Int. J. Hydrogen Energ., 33(21): 6092-6099.
CrossRef -
Carvalho, A.P., L.A. Meireles and F.X. Malcata, 2006. Microalgal reactors: A review of enclosed system designs and performances. Biotechnol. Progr., 22(6): 1490-1506.
CrossRef PMid:17137294 -
Chandrasekhar, K., Y.J. Lee and D.W. Lee, 2015. Biohydrogen production: Strategies to improve process efficiency through microbial routes. Int. J. Mol. Sci., 16(4): 8266-8293.
CrossRef PMid:25874756 PMCid:PMC4425080 -
Chen, C.Y., W.B. Lu, J.F. Wu and J.S. Chang, 2007. Enhancing phototrophic hydrogen production of Rhodopseudomonas palustris via statistical experimental design. Int. J. Hydrogen Energ., 32(8): 940-949.
CrossRef -
Chisti, Y., 2007. Biodiesel from microalgae. Biotechnol. Adv., 25(3): 294-306.
CrossRef PMid:17350212 -
Chung, I.K., J. Beardall, S. Mehta, D. Sahoo and S. Stojkovic, 2011. Using marine macroalgae for carbon sequestration: A critical appraisal. J. Appl. Phycol., 23(5): 877-886.
CrossRef -
Das, D. and T.N. Veziroglu, 2001. Hydrogen production by biological processes: A survey of literature. Int. J. Hydrogen Energ., 26(1): 13-28.
CrossRef -
Das, D. and T.N. Veziroglu, 2008. Advances in biological hydrogen production processes. Int. J. Hydrogen Energ., 33(21): 6046-6057.
CrossRef -
Dasgupta, C.N., J.J. Gilberta, P. Lindblad, T. Heidorn, S.A. Borgvang, K. Skjanes and D. Das, 2010. Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. Int. J. Hydrogen Energ., 35(19): 10218-10238.
CrossRef -
Erbes, D.L., D. King and M. Gibbs, 1979. Inactivation of hydrogenase in cell-free extracts and whole cells of Chlamydomonas reinhardi by oxygen. Plant Physiol., 63(6): 1138-1142.
CrossRef PMid:16660871 PMCid:PMC542984 -
Eroglu, E. and A. Melis, 2011. Photobiological hydrogen production: Recent advances and state of the art. Bioresource Technol., 102(18): 8403-8413.
CrossRef PMid:21463932 -
Fabiano, B. and P. Perego, 2002. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energ., 27(2): 149-156.
CrossRef -
Fang, H.H.P., H. Zhu and T. Zhang, 2006. Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. Int. J. Hydrogen Energ., 31(15): 2223-2230.
CrossRef -
Ferchichi, M., E. Crabbe, G.H. Gil, W. Hintz and A. Almadidy, 2005. Influence of initial pH on hydrogen production from cheese whey. J. Biotechnol., 120(4): 402-409.
CrossRef PMid:16242202 -
Ghirardi, M.L., L. Zhang, J.W. Lee, T. Flynn, M. Seibert, E. Greenbaum and A. Melis, 2000. Microalgae: A green source of renewable H(2). Trends Biotechnol., 18(12): 506-511.
CrossRef -
Ghirardi, M.L., P. King, S. Kosourov, M. Forestier, L. Zhang and M. Seibert, 2006. Development of Algal Systems for Hydrogen Photoproduction: Addressing the Hydrogenase Oxygen-Sensitivity Problem. In: Collings, A.F. and C. Critchley (Eds.), Artificial Photosynthesis: From Basic Biology to Industrial Application. Wiley-VCH Verlag GmbH & Co., Weinheim, pp: 213-227.
CrossRef -
Gressler, P., R. Schneider, V. Corbellini, T. Bjerk, M. Souza, A. Zappe and E.A. Lobo, 2012. Microalgas: Aplicações em biorremediação e energia. In English: Microalgae: Aplications in bioremediation and energy. Cad. Pesquisa Sér. Biol., 24(1): 48-67.
-
Guan, Y., M. Deng, X. Yu and W. Zhang, 2004. Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem. Eng. J., 19(1): 69-73.
CrossRef -
Gutierrez-Wing, M.T., A. Silaban, J. Barnett and K.A. Rusch, 2014. Light irradiance and spectral distribution effects on microalgal bioreactors. Eng. Life Sci., 14(6): 574-580.
CrossRef -
Gutthann, F., M. Egert, A. Marques and J. Appel, 2007. Inhibition of respiration and nitrate assimilation enhances photohydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta, 1767(2): 161-169.
-
Hahn, J.J., M.L. Ghirardi and W.A. Jacoby, 2007. Immobilized algal cells used for hydrogen production. Biochem. Eng. J., 37(1): 75-79.
CrossRef -
Hallenbeck, P.C. and J.R. Benemann, 2002. Biological hydrogen production; fundamentals and limiting processes. Int. J. Hydrogen Energ., 27(11-12): 1185-1193.
CrossRef -
Herrero, M.A., J.M. Kremsner and C.O. Kappe, 2008. Nonthermal microwave effects revisited: On the importance of internal temperature monitoring and agitation in microwave chemistry. J. Org. Chem., 73(1): 36-47.
CrossRef PMid:18062704 -
Hsia, S.Y. and Y.T. Chou, 2014. Optimization of biohydrogen production with biomechatronics. J. Nanomater., 2014: 1-11.
CrossRef -
Jeberlin Prabina, B. and K. Kumar, 2010. Studies on the optimization of cultural conditions for maximum hydrogen production by selected cyanobacteria. ARPN J. Agric. Biol. Sci., 5(5): 22-31.
-
Jo, J.H., D.S. Lee and J.M. Park, 2006. Modeling and optimization of photosynthetic hydrogen gas production by green alga Chlamydomonas reinhardtii in sulfur-deprived circumstance. Biotechnol. Progr., 22(2): 431-437.
CrossRef PMid:16599558 -
Johnston, B., M.C. Mayo and A. Khare, 2005. Hydrogen: The energy source for the 21st century. Technovation, 25(6): 569-585.
CrossRef -
Kars, G., U. Gündüz, M. Yücel, L. Türker and I. Eroglu, 2006. Hydrogen production and transcriptional analysis of nifD, nifK and hupS genes in Rhodobacter sphaeroides O.U.001 grown in media with different concentrations of molybdenum and iron. Int. J. Hydrogen Energ., 31(11): 1536-1544.
CrossRef -
Karthic, P. and J. Shiny, 2012. Comparisons and limitations of biohydrogen production processes. Res. J. Biotechnol., 7(2): 59-71.
-
Keskin, T., L. Giusti and N. Azbar, 2012. Continuous biohydrogen production in immobilized biofilm system versus suspended cell culture. Int. J. Hydrogen Energ., 37(2): 1418-1424.
CrossRef -
Kilonzo, P. and M. Bergougnou, 2012. Surface modifications for controlled and optimized cell immobilization by adsorption: Applications in fibrous bed bioreactors containing recombinant cells. J. Microbial Biochem. Technol., S8(1): 1-9.
CrossRef -
Kim, D.H. and M.S. Kim, 2011. Hydrogenases for biological hydrogen production. Bioresource Technol., 102(18): 8423-8431.
CrossRef PMid:21435869 -
Kim, J.P., C.D. Kang, T.H. Park, M.S. Kim and S.J. Sim, 2006. Enhanced hydrogen production by controlling light intensity in sulfur-deprived Chlamydomonas reinhardtii culture. Int. J. Hydrogen Energ., 31(11): 1585-1590.
CrossRef -
Koku, H., I. Eroglu, U. Gündüz, M. Yücel and L. Türker, 2003. Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. Int. J. Hydrogen Energ., 28(4): 381-388.
CrossRef -
Kosourov, S., M. Seibert and M.L. Ghirardi, 2003. Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol., 44(2): 146-155.
CrossRef PMid:12610217 -
Kosourov, S.N. and M. Seibert, 2009. Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol. Bioeng., 102(1): 50-58.
CrossRef PMid:18823051 -
Kotay, S.M. and D. Das, 2007. Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresource Technol., 98(6): 1183-1190.
CrossRef PMid:16797976 -
Kothari, A., 2013. Improving cyanobacterial hydrogen production through bioprospecting of natural microbial communities. Ph.D. Thesis, Department of Molecular and Cellular Biology, Arizona State University, pp: 268.
-
Kumar, A., S. Ergas, X. Yuan, A. Sahu, Q. Zhang, J. Dewulf, F. Xavier Malcata and H. van Langenhove, 2010. Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions. Trends Biotechnol., 28(7): 371-380.
CrossRef PMid:20541270 -
Kumar, N. and D. Das, 2000. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem., 35(6): 589-593.
CrossRef -
Kumazawa, S. and A. Mitsui, 1981. Characterization and optimization of hydrogen photoproduction by a saltwater blue-green alga, Oscillatoria sp. Miami BG7. I. Enhancement through limiting the supply of nitrogen nutrients. Int. J. Hydrogen Energ., 6(4): 339-348.
CrossRef -
Lai, W.H., H.Y. Chen, F.Y. Chang, C.C. Wu, C.Y. Lin and S.R. Huang, 2011. Market and patent analysis of commercializing biohydrogen technology. Int. J. Hydrogen Energ., 36: 14049-14058.
CrossRef -
Laurinavichene, T.V., A.S. Fedorov, M.L. Ghirardi, M. Seibert and A.A. Tsygankov, 2006. Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. Int. J. Hydrogen Energ., 31(5): 659-667.
CrossRef -
Lazaro, C.Z., M.B.A. Varesche and E.L. Silva, 2015. Effect of inoculum concentration, pH, light intensity and lighting regime on hydrogen production by phototrophic microbial consortium. Renew. Energ., 75: 1-7.
CrossRef -
Lee, D.H. and L.H. Chiu, 2012. Development of a biohydrogen economy in the United States, China, Japan, and India: With discussion of a chicken-and-egg debate. Int. J. Hydrogen Energ., 37(20): 15736-15745.
CrossRef -
Lemus, R.G. and J.M.M. Duart, 2010. Updated hydrogen production costs and parities for conventional and renewable technologies. Int. J. Hydrogen Energ., 35(9): 3929-3936.
CrossRef -
Le Quéré, C., R.J. Andres, T. Boden, T. Conway, R.A. Houghton, J.I. House, G. Marland, G.P. Peters, G. van der Werf, A. Ahlström, R.M. Andrew, L. Bopp, J.G. Canadell, P. Ciais, S.C. Doney, C. Enright, P. Friedlingstein, C. Huntingford, A.K. Jain, C. Jourdain, E. Kato, R.F. Keeling, K. Klein Goldewijk, S. Levis, P. Levy, M. Lomas, B. Poulter, M.R. Raupach, J. Schwinger, S. Sitch, B.D. Stocker, N. Viovy, S. Zaehle and N. Zeng, 2012. The global carbon budget 1959-2011. Earth Syst. Sci. Data Discuss., 5(2): 1107-1157.
CrossRef -
Levin, D.B., L. Pitt and M. Love, 2004. Biohydrogen production: Prospects and limitations to practical application. Int. J. Hydrogen Energ., 29(2): 173-185.
CrossRef -
Lewis, N.S. and D.G. Nocera, 2006. Powering the planet: Chemical challenges in solar energy utilization. P. Natl. Acad. Sci. USA, 103(43): 15729-15735.
CrossRef PMid:17043226 PMCid:PMC1635072 -
Lin, C.Y. and C.H. Jo, 2003. Hydrogen production from sucrose using an anaerobic sequencing batch reactor process. J. Chem. Technol. Biot., 78(6): 678-684.
CrossRef -
Liu, J., V.E. Bukatin and A.A. Tsygankov, 2006. Light energy conversion into H2 by Anabaena variabilis mutant PK84 dense cultures exposed to nitrogen limitations. Int. J. Hydrogen Energ., 31(11): 1591-1596.
CrossRef -
Maniatis, K., 2003. Pathways for the Production of Bio-hydrogen: Opportunities and Challenges. In: Towards Hydrogen. IEA, Paris.
-
Manish, S. and R. Banerjee, 2008. Comparison of biohydrogen production processes. Int. J. Hydrogen Energ., 33(1): 279-286.
CrossRef -
Mathews, J. and G. Wang, 2009. Metabolic pathway engineering for enhanced biohydrogen production. Int. J. Hydrogen Energ., 34(17): 7404-7416.
CrossRef -
Melis, A., 2002. Green alga hydrogen production: Progress, challenges and prospects. Int. J. Hydrogen Energ., 27(11-12): 1217-1228.
CrossRef -
Melis, A., 2007. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta, 226(5): 1075-1086.
CrossRef PMid:17721788 -
Melis, A. and T. Happe, 2001. Hydrogen production. Green algae as a source of energy. Plant Physiol., 127(3): 740-748.
CrossRef PMid:11706159 PMCid:PMC1540156 -
Melis, A., L. Zhang, M. Forestier, M.L. Ghirardi and M. Seibert, 2000. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol., 122(1): 127-136.
CrossRef PMid:10631256 PMCid:PMC58851 -
Mishra, T., P. Kushwah, K. Dholiya and V. Kothari, 2013. Effect of low power microwave radiation on microorganisms and other life forms. AMWT, 1(1): 4.
CrossRef -
Momirlan, M. and T.N. Veziroglu, 2005. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int. J. Hydrogen Energ., 30(7): 795-802.
CrossRef -
Mussgnug, J.H., S. Thomas-Hall, J. Rupprecht, A. Foo, V. Klassen, A. McDowall, P.M. Schenk, O. Kruse and B. Hankamer, 2007. Engineering photosynthetic light capture: Impacts on improved solar energy to biomass conversion. Plant Biotechnol. J., 5(6): 802-814.
CrossRef PMid:17764518 -
Nath, K., A. Kumar and D. Das, 2006. Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11. Can. J. Microbiol., 52(6): 525-532.
CrossRef PMid:16788720 -
Nath, K. and D. Das, 2011. Modeling and optimization of fermentative hydrogen production. Bioresource Technol., 102(18): 8569-8581.
CrossRef PMid:21531132 -
Oh, Y.K., E.H. Seol, J.R. Kim and S. Park, 2003. Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int. J. Hydrogen Energ., 28(12): 1353-1359.
CrossRef -
Olivo, C., I. Lebedeva, C.Y. Chu, C.Y. Lin and S.Y. Wu, 2011. A patent analysis on advanced biohydrogen technology development and commercialisation: Scope and competitiveness. Int. J. Hydrogen Energ., 36: 14103-14110.
CrossRef -
Oncel, S. and F. Vardar Sukan, 2011. Effect of light intensity and the light: Dark cycles on the long term hydrogen production of Chlamydomonas reinhardtii by batch cultures. Biomass Bioenerg., 35(3): 1066-1074.
CrossRef -
Öztürk, Y., M. Yücel, F. Daldal, S. Mandaci, U. Gündüz, L. Türker and I. Eroglu, 2006. Hydrogen production by using Rhodobacter capsulatus mutants with genetically modified electron transfer chains. Int. J. Hydrogen Energ., 31(11): 1545-1552.
CrossRef -
Pelczar, Jr. M.J., E.C.S. Chan and N.R. Krieg, 2008. Microbiology Concepts and Application. 2nd Edn., Pearson Makron Books.
PMCid:PMC2519376 -
Polle, J.E.W., J.R. Benemann, A. Tanaka and A. Melis, 2000. Photosynthetic apparatus organization and function in the wild type and a chlorophyll b-less mutant of Chlamydomonas reinhardtii. Dependence on carbon source. Planta, 211(3): 335-344.
CrossRef PMid:10987551 -
Polle, J.E.W., S. Kanakagiri, E. Jin, T. Masuda and A. Melis, 2002. Truncated chlorophyll antenna size of the photosystems—a practical method to improve microalgal productivity and hydrogen production in mass culture. Int. J. Hydrogen Energ., 27(11-12): 1257-1264.
CrossRef -
Polle, J.E., S.D. Kanakagiri and A. Melis, 2003. Tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta, 217(1): 49-59.
PMid:12721848 -
Prince, R.C. and H.S. Kheshgi, 2005. The photobiological production of hydrogen: Potential efficiency and effectiveness as a renewable fuel. Crit. Rev. Microbiol., 31(1): 19-31.
CrossRef PMid:15839402 -
Quadrelli, R. and S. Peterson, 2007. The energy–climate challenge: Recent trends in CO2 emissions from fuel combustion. Energ. Policy, 35(11): 5938-5952.
CrossRef -
Rajeshwar, K., R. McConnell, K. Harrison and S. Licht, 2008. Renewable Energy and the Hydrogen Economy. In: Rajeshwar, K., R. McConnell and S. Lich (Eds.), Solar Hydrogen Generation: Toward a Renewable Energy Future. Springer, New York, pp: 1-18.
CrossRef -
Rashid, N., K. Lee and Q. Mahmood, 2011. Bio-hydrogen production by Chlorella vulgaris under diverse photoperiods. Bioresource Technol., 102(2): 2101-2104.
CrossRef PMid:20826084 -
Rashid, N., M.S.U. Rehman, S. Memon, Z. Ur Rahman, K. Lee and J.I. Han, 2013. Current status, barriers and developments in biohydrogen production by microalgae. Renew. Sust. Energ. Rev., 22: 571-579.
CrossRef -
Rashid, N., W. Song, J. Park, H.F. Jin and K. Lee, 2009. Characteristics of hydrogen production by immobilized cyanobacterium Microcystis aeruginosa through cycles of photosynthesis and anaerobic incubation. J. Ind. Eng. Chem., 15(4): 498-503.
CrossRef -
Razeghifard, R., 2013. Algal biofuels. Photosynth. Res., 117(1-3): 207-219.
CrossRef PMid:23605290 -
Rupprecht, J., B. Hankamer, J.H. Mussgnug, G. Ananyev, C. Dismukes and O. Kruse, 2006. Perspectives and advances of biological H2 production in microorganisms. Appl. Microbiol. Biot., 72(3): 442-449.
CrossRef PMid:16896600 -
Sambusiti, C., M. Bellucci, A. Zabaniotou, L. Beneduce and F. Monlau, 2015. Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review. Renew. Sust. Energ. Rev., 44: 20-36.
CrossRef -
Shaishav, S., R.N. Singh and T. Satyendra, 2013. Biohydrogen from algae: Fuel of the future. Int. Res. J. Environ. Sci., 2(4): 44-47.
-
Show, K.Y., D.J. Lee, J.H. Tay, C.Y. Lin and J.S. Chang, 2012. Biohydrogen production: Current perspectives and the way forward. Int. J. Hydrogen Energ., 37(20): 15616-15631.
CrossRef -
Srirangan, K., M.E. Pyne and C. Perry Chou, 2011. Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresource Technol., 102(18): 8589-8604.
CrossRef PMid:21514821 -
Stripp, S.T. and T. Happe, 2009. How algae produce hydrogen--news from the photosynthetic hydrogenase. Dalton T., 45: 9960-9969.
CrossRef PMid:19904421 -
Troshina, O., L. Serebryakova, M. Sheremetieva and P. Lindblad, 2002. Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. Int. J. Hydrogen Energ., 27(11-12): 1283-1289.
CrossRef -
Tsygankov, A.A., S.N. Kosourov, I.V. Tolstygina, M.L. Ghirardi and M. Seibert, 2006. Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int. J. Hydrogen Energ., 31(11): 1574-1584.
CrossRef -
Uggetti, E., B. Sialve, E. Trably and J.P. Steyer, 2014. Integrating microalgae production with anaerobic digestion: A biorefinery approach. Biofuel. Bioprod. Bior., 8(4): 516-529.
CrossRef -
Uyar, B., I. Eroglu, M. Yücel, U. Gündüz and L. Türker, 2007. Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. Int. J. Hydrogen Energ., 32(18): 4670-4677.
CrossRef -
Vardar-Schara, G., T. Maeda and T.K. Wood, 2008. Metabolically engineered bacteria for producing hydrogen via fermentation. Microb. Biotechnol., 1(2): 107-125.
CrossRef PMid:21261829 PMCid:PMC3864445 -
Vignais, P.M., 2008. Hydrogenases and H(+)-reduction in primary energy conservation. Results Probl. Cell Differ., 45: 223-252.
CrossRef PMid:18500479 -
Wahal, S. and S. Viamajala, 2010. Maximizing algal growth in batch reactors using sequential change in light intensity. Appl. Biochem. Biotech., 161(1-8): 511-522.
-
White, A.L. and A. Melis, 2006. Biochemistry of hydrogen metabolism in Chlamydomonas reinhardtii wild type and a Rubisco-less mutant. Int. J. Hydrogen Energ., 31(4): 455-464.
CrossRef -
Winkler, M., A. Hemschemeier, C. Gotor, A. Melis and T. Happe, 2002. [Fe]-hydrogenases in green algae: Photo-fermentation and hydrogen evolution under sulfur deprivation. Int. J. Hydrogen Energ., 27(11-12): 1431-1439.
CrossRef -
Wu, S., X. Li, J. Yu and Q. Wang, 2012. Increased hydrogen production in co-culture of Chlamydomonas reinhardtii and Bradyrhizobium japonicum. Bioresource Technol., 123: 184-188.
CrossRef PMid:22940317 -
Younesi, H., G. Najafpour, K.S. Ku Ismail, A.R. Mohamed and A.H. Kamaruddin, 2008. Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum. Bioresource Technol., 99(7): 2612-2619.
CrossRef PMid:17582763 -
Zhang, H., M.A. Bruns and B.E. Logan, 2006. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor. Water Res., 40(4): 728-734.
CrossRef PMid:16427113 -
Zhang, L., M. He and J. Liu, 2014. The enhancement mechanism of hydrogen photoproduction in Chlorella protothecoides under nitrogen limitation and sulfur deprivation. Int. J. Hydrogen Energ., 39(17): 8969-8976.
CrossRef -
Zhang, L., T. Happe and A. Melis, 2002. Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta, 214(4): 552-561.
CrossRef PMid:11925039 -
Zhu, L.D., E. Hiltunen, E. Antila, J.J. Zhong, Z.H. Yuan and Z.M. Wang, 2014. Microalgal biofuels: Flexible bioenergies for sustainable development. Renew. Sust. Energ. Rev., 30: 1035-1046.
CrossRef
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|