Research Article | OPEN ACCESS
Synthesis and Characterization of Zro2 and Tio2 Nanoparticles
1Yaseenhasan Kadhim, 1Nihadabdul Ameer and 2Abbas Abd Latteef
1Department of Physics, College of Sciences, University of Babylon, Bail
2College of Pharmacy, Almustansiriyah University, Baghdad, Iraq
Research Journal of Applied Sciences, Engineering and Technology 2016 10:1018-1024
Received: July ‎2, ‎2015 | Accepted: August ‎15, ‎2015 | Published: May 15, 2016
Abstract
The objective of this project is to synthesis ZrO2 and TiO2 nanoparticlesby chemical methods. 4.2 g of ZrCl4 was dissolved in 300 mL distilled water, the source solution. 0, 03 M/mL as a molar concentration of sorbitol and ammonia was made as a solution, called a “target” and stirredfor 5 min. The source and target were mixed and stirred slowly. The final solution was heated to 70°C with stirring. Finally The solution was filtered and washed to obtain the nanoparticles; 5 mL of titanium isopropoxide was added to 15 mL of isopropanol. A solution of water, HNO3 and NH4OH was added to the first solution in order to tune ph to be 4. Then the mixture was stirred at 60- 70°C for 20 h. Thereafter the precipitate was filtered and washed with ethanol and then dried at 100°C for 4 h under vacuum. Finally the powder was annealed at 600°C for 2 h to obtain TiO2 nanoparticles. UV-VIS, XRD and SEM analyses were made to these powders, compared with other ones and then found that these particles obtained are in Nano range.
Keywords:
Chemical method, nanoparticles, titanium dioxide, zirconium dioxide,
References
-
Ahmed, M.S. and Y.A. Attia, 1995. Aerogel materials for photocatalytic detoxification of cyanide wastes in water. J. Non-Cryst. Solids, 186: 402-407.
CrossRef -
Alaei, M., A.M. Rashidi and I. Bakhtiari, 2014. Preparation of high surface area ZrO2 nanoparticles. Iran J. Chem. Chem. Eng., 33(2): 47-53.
-
Barbé, C.J., F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover and M. Grätzel, 1997. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J. Am. Ceram. Soc., 80(12): 3157-3171.
CrossRef -
Chandra, N., D.K. Singh, M. Sharma, R.K. Upadhyay, S.S. Amritphale and S.K. Sanghi, 2010. Synthesis and characterization of nano-sized zirconia powder synthesized by single emulsion-assisted direct precipitation. J. Colloid Interf. Sci., 342(2): 327-332.
CrossRef PMid:19942226 -
Ehrhart, G., B. Capoen, O. Robbe, Ph. Boy, S. Turrell and M. Bouazaoui, 2006. Structural and optical properties of n-propoxide sol–gel derived ZrO2 thin films. Thin Solid Films, 496(2): 227-233.
CrossRef -
Faure, B., G. Salzar-Alvares, A. Ahniyaz, I. Villaluenga, G. Berriozabal et al., 2013. Dispersion and surface functionalization of oxide nanoparticles. Sci. Technol. Adv. Mat., 14(2).
CrossRef PMid:27877568 PMCid:PMC5074370 -
Ferroni, M., V. Guidi, G. Martinelli, G. Faglia, P. Nelli et al., 1996. Characterization of a nanosized TiO2 gas sensor. ACS Sym. Ser., 7(7): 709-718.
CrossRef -
Hang, H., M. Zhu, Y. Li, Q. Zhang and H. Wang, 2011. Mechanical properties of dental resin composites by co-filling diatomite and nanosized silica particles. Mater. Sci. Eng. C., 31(3): 600-605.
CrossRef -
Jiang, J., G. Oberdaster and P. Biswas, 2009. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res., 11(1): 77-89.
CrossRef -
Li, H., H. Deng and J. Zhao, 2009. Performance research of polyester fabric treated by nano titanium dioxide (N ano-TiO2) anti-ultraviolet finishing. Int. J. Chem., 1(1): 57-62.
CrossRef -
Liang, J., X. Jiang, G. Liu, Z. Deng, J. Zhuang et al., 2003. Characterization and synthesis of pure ZrO2 nanopowders via sonochemical method. Mater. Res. Bull., 38(1): 161-168.
CrossRef -
Liu, Y., Y. Tan, T. Lei, Q. Xiang, Y. Han and B. Huang, 2009. Effect of porous glass-ceramic fillers on mechanical properties of light-cured dental resin composites. Dent. Master, 25(6): 709-715.
CrossRef PMid:19131096 -
Mahmoud, A.K., Z. Fadill, S.I. Al-Nassar, F.I. Husein, E. Akman and A. Demir, 2013. Synthesis of zirconia nanoparticles in distilled water solution by laser ablation technique. J. Mater. Sci. Eng. B, 3(6): 364-368.
-
Mahshad, S., M.S. Ghamsari, M. Askari, N. Afshar and S. Lahuti, 2006. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Semiconductor Phys. Quantum Electron. optoelectron., 9(2): 65-68.
-
Maynard, A.D. and D.Y.H. Pui, 2007. Nanoparticles and Occupational Health. Springer, Netherlands, pp: 185.
-
Miao, X., M. Zhu, Y. Li, Q. Zhang and H. Wang, 2012. Synthesis of dental resins using diatomite and nano-sized SiO2 and TiO2. Prog. Nat. Sci. Mater. Int., 22(2): 94-99.
CrossRef -
Rozo, C., D. Jaque, L.F. Fonseca and J.G. Solé, 2008. Luminescence of rare earth-doped Si–ZrO2 co-sputtered films. J. Lumin., 128(7): 1197-1204.
CrossRef -
Sauter, C., M.A. Emin, H.P. Schuchmann and S. Tavman, 2008. Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles. Ultrason. Sonochem., 15(4): 517-523.
CrossRef PMid:17977777 -
Scholz, S.M., R. Vacassy, L. Lemaire, J. Dutta and H. Hofmann, 1998. Nanoporous aggregates of ZnS nanocrystallites. Appl. Organomet. Chem., 12(5): 327-335.
CrossRef -
Shukla, S. and S. Seal, 2005. Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia. Int. Matter. Rev., 50(1): 45-64.
CrossRef -
Simard, J.M., 2007. Synthesis of gold nanoparticles for biomacromolecular recognition. Ph.D. Thesis, University of Massachusetts, Amherst, pp: 35.
-
Torres-Huerta, A.M., M.A. Domínguez-Crespo, E. Ramírez-Meneses and J.R. Vargas-García, 2009. MOCVD of zirconium oxide thin films: Synthesis and characterization. Appl. Surf. Sci., 255(9): 4792-4795.
CrossRef -
Wu, M., F. Zhang, J. Yu, H. Zhou, D. Zhang, C. Hu and J. Huang, 2014. Fabrication and evaluation of light-curing nanocomposite resins filled with surface-modified TiO2 nanoparticles for dental application. Iran. Polym. J., 23(7): 513-524.
CrossRef -
Zakeri, M., M.R. Rashidipour and B.J. Abbasi, 2013. Synthesis of nanostructure tetragonal ZrO2 by high energy ball milling. Mater. Technol. Adv. Perform. Mater., 28(4): 181-186.
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|