Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Comparison of Fault Diagnosis Approaches in Industrial Wireless Networks: A Review

1, 3Moneer Ali Lilo, 1L.A. Latiff, 2Aminudin Bin Haji Abu and 4Yousif I. Al Mashhadany
1Razak School of Engineering and Advanced Technologi, Universiti Teknologi Malaysia
2Malaysia-Japan International Institute of Technologi, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia,br> 3Department of Physics, College of Science, Al Muthana University, Al Muthana
4Department of Engineering, Engineering College, University of Anbar, Iraq
Research Journal of Applied Sciences, Engineering and Technology  2016  12:1190-1195
http://dx.doi.org/10.19026/rjaset.12.2876  |  © The Author(s) 2016
Received: September ‎17, ‎2015  |  Accepted: January ‎16, ‎2016  |  Published: June 15, 2016

Abstract

Wireless sensor networks have received increasing research attention and they can be found in every field of life. The industrial wireless sensor network is one of the boosting and emerging technologies for machine fault diagnosis and monitoring. This study provides a review on vibration fault diagnosis approaches in industrial wireless applications and discusses the causes of machine faults and challenges. Several advanced vibration approaches have been used to quantify machine operating conditions. These approaches provide a fault diagnosis mechanism and expert maintenance solutions through analysis of vibration. The review also shows a broad scope of research for developing a robust fault diagnosis approaches in the field of industrial wireless sensor networks.

Keywords:

Artificial intelligence , challenges , fault diagnosis, industries,


References

  1. Chandrasekaran, B. and S. Mittal, 1983. Deep versus compiled knowledge approaches to diagnostic problem-solving. Int. J. Man-Mach. Stud., 19(5): 425-436.
    CrossRef    
  2. Filippetti, F., G. Franceschini, C. Tassoni and P. Vas, 2000. Recent developments of induction motor drives fault diagnosis using AI techniques. IEEE T. Ind. Electron., 47(5): 994-1004.
    CrossRef    
  3. Fink, P.K., J.C. Lusth and J.W. Duran, 1985. A general expert system design for diagnostic problem solving. IEEE T. Pattern Anal., PAMI-7(5): 553-560.
    CrossRef    
  4. Fink, P.K. and J.C. Lusth, 1987. Expert systems and diagnostic expertise in the mechanical and electrical domains. IEEE T. Syst. Man Cyb., 17(3): 340-349.
    CrossRef    
  5. Henao, H., G.A. Capolino, M. Fernandez-Cabanas and F. Filippetti, 2014. Trends in fault diagnosis for electrical machines: A review of diagnostic techniques. IEEE Ind. Electron. Mag., 8(2): 31-42.
    CrossRef    
  6. Hou, L. and N.W. Bergmann, 2011. Induction motor fault diagnosis using industrial wireless sensor networks and Dempster-Shafer classifier fusion. Proceeding of the 37th Annual Conference on IEEE Industrial Electronics Society (IECON, 2011), pp: 2992-2997.
    CrossRef    
  7. Hou, L. and N.W. Bergmann, 2012. Novel industrial wireless sensor networks for machine condition monitoring and fault diagnosis. IEEE T. Instrum. Meas., 61(10): 2787-2798.
    CrossRef    
  8. ISO 11898, 1993. Road Vehicles-Interchange of Digital Information-Controller Area Network (CAN) for High-Speed Communication. International Standards Organization, Switzerland.
  9. Jecht, U., W. Stripf and P. Wenzel, 2005. PROFIBUS: Open Solutions for the World of Automation. In: Zurawski, R. (Ed.), the Industrial Communication Technology Handbook. CRC Press, Taylor & Francis Group, Boca Raton, FL.
  10. Liu, X., L. Ma and J. Mathew, 2009. Machinery fault diagnosis based on fuzzy measure and fuzzy integral data fusion techniques. Mech. Syst. Signal Pr., 23(3): 690-700.
    CrossRef    
  11. Nadakatti, M., A. Ramachandra and A.N. Santosh Kumar, 2008. Artificial intelligence-based condition monitoring for plant maintenance. Assembly Autom., 28(2): 143-150.
    CrossRef    
  12. Nandi, S. and H.A. Toliyat, 2005. Condition monitoring and fault diagnosis of electrical machines -a review. IEEE T. Energy Conver., 20(4): 719-729.
    CrossRef    
  13. Nelson, W.R., 1982. REACTOR: An expert system for diagnosis and treatment of nuclear reactor accidents. From AAAI-82 Proceedings.
  14. Niu, G., T. Han, B.S. Yang and A.C.C. Tan, 2007. Multi-agent decision fusion for motor fault diagnosis. Mech. Syst. Signal Pr., 21(3): 1285-1299.
    CrossRef    
  15. Qureshi, K.N. and A.H. Abdullah, 2013. A survey on intelligent transportation systems. Middle-East J. Sci. Res., 15(5): 629-642.
  16. Song, J., A.K. Mok, D. Chen and M. Nixon, 2006. Using real-time logic synthesis tool to achieve process control over wireless sensor networks. Proceeding of the 12th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pp: 420-426.
    PMid:26626529    
  17. Stüber, G.L., 1996. Principles of Mobile Communication. Kluwer Academic Publishers, Norwell, MA, USA.
    CrossRef    
  18. Thomesse, J.P., 2004. The Worldfip Fieldbus. Industrial Information Technology Handbook, pp: 26.
    CrossRef    
  19. West, G.M., S.D.J. McArthur and D. Towle, 2012. Industrial implementation of intelligent system techniques for nuclear power plant condition monitoring. Expert Syst. Appl., 39(8): 7432-7440.
    CrossRef    
  20. Wulandhari, L.A., A. Wibowo and M.I. Desa, 2015. Condition diagnosis of multiple bearings using adaptive operator probabilities in genetic algorithms and back propagation neural networks. Neural Comput. Appl., 26(1): 57-65.
    CrossRef    
  21. Yang, B.S. and K.J. Kim, 2006. Application of Dempster-Shafer theory in fault diagnosis of induction motors using vibration and current signals. Mech. Syst. Signal Pr., 20(2): 403-420.
    CrossRef    
  22. Zhao, Y., M.L. Lu and Y. Yuan, 2000. Operation and maintenance integration to improve safety. Comput. Chem. Eng., 24(2-7): 401-407.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved