Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Modeling CO2-H2-S Corrosion of Tubular at Elevated Pressure and Temperature

Rida Elgaddafi, Ramadan Ahmed and Subhash Shah
University of Oklahoma, Sarkeys Energy Center, 100 Boyd St, Room 1180, Norman, OK 73019, USA
Research Journal of Applied Sciences, Engineering and Technology  2016  7:510-524
http://dx.doi.org/10.19026/rjaset.13.3011  |  © The Author(s) 2016
Received: November ‎11, ‎2015  |  Accepted: February ‎10, ‎2016  |  Published: October 05, 2016

Abstract

This study is aimed at improving carbon steel corrosion prediction in CO2-H2S environment. Corrosion is one of the major challenges faced by the oil and gas industry. This is mainly because of corrosive nature of formation fluids. Often produced hydrocarbons are accompanied by brine containing acidic gases such as carbon dioxide and hydrogen sulfide. A number of CO2-H2S corrosion models have been developed to predict corrosion of carbon steel under low-pressure (partial pressures of CO2- and H2-S less than 12 and 30 bar, respectively) and low-temperature. These models overestimate corrosion rate at high-pressure and high-temperature (HPHT) due to the application of the Henry’s law in predicting solubility of CO2 and H2S in NaCl solution (brine) under HPHT. In this study, an improved corrosion model, which utilizes thermodynamic based gas solubility model, has been developed to predict concentration of corrosive gases (CO2 and H2S) in brine solution saturated with natural gas. The corrosion model is verified using experimental data available in the literature. Predominantly, model predictions show good agreement with corrosion rate measurements obtained under various conditions.

Keywords:

Corrosion, tubular, carbon dioxide , hydrogen sulfide , pressure , temperature,


References

  1. Anderko, A., 2000. Simulation of FeCO3/FeS scale formation using thermodynamic and electrochemical models. Proceeding of the NACE International Conference (CORROSION/00). Orlando, Florida, Paper No. 102.
  2. Anderko, A.M. and R.D. Young, 1999. Simulation of CO2/H2S corrosion using thermodynamic and electrochemical models. Proceeding of the NACE International Conference (CORROSION/99). San Antonio, Texas.
  3. Asmara, Y.P. and M.C. Ismail, 2011. Study combinations effects of HAc in H2S/CO2 corrosion. J. Appl. Sci., 11(10): 1821-1826.
    CrossRef    Direct Link
  4. Bich, N.N. and K. Goerz, 1996. Caroline pipeline failure: Findings on corrosion mechanisms in wet sour gas systems containing significant CO2. Proceeding of the NACE International Conference (CORROSION/96). Denver, Colorado.
  5. Brown, B., S. Nesic and S.R. Parakala, 2004. CO2 corrosion in the presence of trace amounts of H2S. Proceeding of the NACE International Conference (CORROSION/04). New Orleans, Louisiana, Paper No. 736.
  6. Choi, Y.S. and S. Nešic, 2011. Determining the corrosive potential of CO2 transport pipeline in high PCO2–water environments. Int. J. Greenh. Gas Con., 5(4): 788-797.
  7. Duan, Z. and R. Sun, 2003. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem. Geol., 193(3-4): 257-271.
    CrossRef    Direct Link
  8. Duan, Z. and S. Mao, 2006. A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523 K and from 1 to 2000 bar. Geochim. Cosmochim. Ac., 70(13): 3369-3386.
  9. Duan, Z., R. Sun, R. Liu and C. Zhu, 2007. Accurate thermodynamic model for the calculation of H2S solubility in pure water and brines. Energ. Fuels, 21(4): 2056-2065.
  10. Fang, H., B. Brown and S. Nešic, 2010. High salt concentration effects on CO2 corrosion and H2S corrosion. Proceeding of the NACE International Conference (CORROSION/10). San Antonio, Texas, Paper No. 10276.
  11. Fardisi, S., N. Tajallipour and P.J. Teevens, 2012. Predicting general corrosion rates in sour environments with the growth of a protective iron sulphide film. Proceeding of the NACE International Conference (CORROSION/12). Salt Lake City, Utah, Paper No. 1471.
  12. Hershey, J.P., T. Plese and F.J. Millero, 1988. The pK1* for the dissociation of H2S in various ionic media. Geochim. Cosmochim. Ac., 52(8): 2047-2051.
  13. Ikeda, A., M. Ueda and S. Mukai, 1985. Influence of environmental factors on corrosion in CO2 source well. Proceeding of the Technical Symposia on Advances in CO2 Corrosion. NACE, Houston, TX, 2: 1-22.
  14. Jingen, D., Y. Wei, L., Xiaorong and D. Xiaoqin, 2011. Influence of H2S content on CO2 corrosion behaviors of N80 tubing steel. Pet. Sci. Technol., 29(13): 1387-1396.
  15. Kvarekval, J., R. Nyborg and H. Choi, 2003. Formation of multilayer iron sulfide films during high temperature CO2/H2S corrosion of carbon steel. Proceeding of the NACE International Conference (CORROSION/03). San Diego, California, Paper No. 339.
  16. Kvarekval, J., A. Dugstad, I.H. Omar and Y.M. Gunaltun, 2005. H2S corrosion of carbon steel under simulated kashagan field conditions. Proceeding of the NACE International Conference (CORROSION/05). Houston, Texas, Paper No. 300.
  17. Kumar, A., J.L. Pacheco, S.K. Desai, W. Huang, R.V. Reddy, W. Sun and C.A. Haarseth, 2014. Selecting representative laboratory test conditions for mildly sour Sulfide Stress Corrosion (SSC) testing. Proceeding of the NACE International Conference (CORROSION/14). San Antonio, Texas, Paper No. 4243.
  18. Li, C., S. Desai, J. Pacheco, F. Cao and S. Ling, 2013. Effect of sodium chloride concentration on carbon steel sour corrosion. Proceeding of the NACE International Conference (CORROSION/13). Orlando, Florida, Paper No. 2486.
  19. Li, C., Y. Xiong, J.L. Pacheco, F. Cao, S.K. Desai and S. Ling, 2014. Effect of wall shear stress on sour corrosion of carbon steel. Proceeding of the NACE International Conference (CORROSION/14). San Antonio, Texas, Paper No. 4051.
  20. Li, W.F., Y.J. Zhou and Y. Xue, 2012. Corrosion behavior of 110S tube steel in environments of high H2S and CO2 content. J. Iron Steel Res. Int., 19(12): 59-65.
    CrossRef    Direct Link
  21. Mao, S. and Z. Duan, 2006. A thermodynamic model for calculating nitrogen solubility, gas phase composition and density of the N2–H2O–NaCl system. Fluid Phase Equilibr., 248(2): 103-114.
  22. Meyssami, B., M.O. Balaban and A.A. Teixeira, 1992. Prediction of pH in model systems pressurized with carbon dioxide. Biotechnol. Prog., 8(2): 149-154.
    CrossRef    Direct Link
  23. Millero, F.J., 1986. The thermodynamics and kinetics of the hydrogen sulfide system in natural waters. Mar. Chem., 18(2-4): 121-147.
    CrossRef    Direct Link
  24. Millero, F., F. Huang, T. Graham and D. Pierrot, 2007. The dissociation of carbonic acid in NaCl solutions as a function of concentration and temperature. Geochim. Cosmochim. Ac., 71(1): 46-55.
  25. Mohamed, M.F., A. Mohamed Nor, M.F. Suhor, M. Singer, Y.S. Choi and S. Nesic, 2011. Water chemistry for corrosion prediction in high pressure CO2 environments. Proceeding of the NACE International Conference (CORROSION/11). Houston, Texas, Paper No. 11375.
  26. Mohammed Nor, A., M.F. Suhor, A.Z. Abas and S. Mat, 2014. Effect of CO2/H2S on corrosion behavior of API 5L 65 carbon steel in high PCO2 environments. Proceeding of the Offshore Technology Conference-Asia, 2014. Kuala Lumpur, Malaysia, Paper No. OTC-24962-MS.
  27. Nešic, S., M. Nordsveen, R. Nyborg and A. Stangeland, 2003. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-Part 2: A numerical experiment. Corrosion, 59(6): 489-497.
    CrossRef    Direct Link
  28. Nesic, S., S. Wang, H. Fang, W. Sun and J.K.L. Lee, 2008. A new updated model of CO2/H2S corrosion in multiphase flow. Proceeding of the NACE International Conference (CORROSION/08). New Orleans, Louisiana, Paper No. 535.
  29. Nešic, S., H. Li, J. Huang and D. Sormaz, 2009. An open source mechanistic model for CO2 / H2S corrosion of carbon steel. Proceeding of the NACE International Conference (CORROSION/09). Atlanta, Georgia, Paper No. 572.
  30. Nordsveen, M., S. Nešic, R. Nyborg and A. Stangeland 2003. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—Part 1: Theory and verification. Corrosion, 59(5): 443-456.
    CrossRef    Direct Link
  31. Rumpf, B., H. Nicolaisen, C. Öcal and G. Maurer, 1994. Solubility of carbon dioxide in aqueous solutions of sodium chloride: Experimental results and correlation. J. Solution Chem., 23(3): 431-448.
    CrossRef    Direct Link
  32. Schmitt, G., 1991. Effect of elemental sulfur on corrosion in sour gas systems. Corrosion, 47(4): 285-308.
    CrossRef    Direct Link
  33. Schutt, H.U. and F.F. Lyle, 1998. CO2/H2S Corrosion under wet gas pipeline conditions in the presence if bicarbonate, chloride, and oxygen. Proceeding of the NACE International Conference (Corrosion/98). San Diego, California.
  34. Singer, M., S. Nesic, B.N. Brown and A.C. Manuitt, 2007. Combined effect of CO2, H2S and acetic acid on bottom of the line corrosion. Proceeding of the NACE International Conference (CORROSION/07). Nashville, Tennessee.
  35. Singer, M., A. Camacho, B. Brown and S. Nesic, 2010. Sour top of the line corrosion in the presence of acetic acid. Proceeding of the NACE International Conference (CORROSION/10). San Antonio, Texas, Paper No. 10100.
  36. Smith, S.N. and J.L. Pacheco, 2002. Prediction of corrosion in slightly sour environments. Proceeding of the NACE International Conference (CORROSION/02). Denver, Colorado.
  37. Srinivasan, S. and R.D. Kane, 1996. Prediction of corrosivity of CO2/H2S production environments. Proceeding of the NACE International Conference (CORROSION/96). Denver, Colorado.
  38. Sun, W. and S. Nesic, 2007. A mechanistic model of H2S corrosion of mild steel. Proceeding of the NACE International Conference (CORROSION/07). Nashville, Tennessee, Paper No. 07655.
  39. Sun, W. and S. Nešic, 2009. A mechanistic model of uniform hydrogen sulfide/carbon dioxide corrosion of mild steel. Corrosion, 65(5): 291-307.
    CrossRef    Direct Link
  40. Sun, W., S. Nesic and S. Papavinasam, 2006. Kinetics of iron sulfide and mixed iron sulfide/carbonate scale precipitation in CO2/H2S corrosion. Proceedings of the NACE International Conference (Corrosion/06). San Diego, California, Paper No. 6644.
  41. Sun, W., S. Nešic, D. Young and R.C. Woollam, 2008. Equilibrium expressions related to the solubility of the sour corrosion product mackinawite. Ind. Eng. Chem. Res., 47(5): 1738-1742.
    CrossRef    Direct Link
  42. Svenningsen, G., A. Palencsár and J. Kvarekvå, 2009. Investigation of iron sulfide surface layer growth in aqueous H2S/CO2 environments. Proceeding of the NACE International Conference (CORROSION/09). Atlanta, Georgia.
  43. Takenouchi, S. and G.C. Kennedy, 1965. The solubility of carbon dioxide in NaCl solutions at high temperatures and pressures. Am. J. Sci., 263(5): 445-454.
    CrossRef    Direct Link
  44. Valdes, A., R. Case, M. Ramirez and A. Ruiz, 1998. The effect of small amounts of H2S on CO2 corrosion of a carbon steel. Proceeding of the NACE International Conference (CORROSION/98). San Diego, California, Paper No. 22.
  45. Videm, K. and J. Kvarekvål, 1995. Corrosion of carbon steel in carbon dioxide-saturated solutions containing small amounts of hydrogen sulfide. Corrosion, 51(4): 260-269.
    CrossRef    Direct Link
  46. Woollam, R., K. Tummala, J. Vera and S. Hernandez, 2011. Thermodynamic prediction of FeCO3/FeS corrosion product films. Proceeding of the NACE International Conference (CORROSION/11). Houston, Texas.
  47. Yan, W., J. Deng, P. Zhu and X. Xing, 2015. Investigation of PH2S influence on 3% Cr tubing steel corrosion behaviours in CO2-H2S-Cl- environment. Corros. Eng. Sci. Techn., 50(7): 525-532.
  48. Yin, Z.F., W.Z. Zhao, Z.Q. Bai, Y.R. Feng and W.J. Zhou, 2008. Corrosion behavior of SM 80SS tube steel in stimulant solution containing H2S and CO2. Electrochim. Acta, 53(10): 3690-3700.
    CrossRef    Direct Link
  49. Zhang, L., R.M. Ding, J.W. Yang and M.X. Lu, 2009. Analysis of corrosion scales on X60 steel under high H2S/CO2 content environments. J. Univ., Sci. Technol. Beijing, 31(5): 563-567.
    Direct Link
  50. Zhang, L., W. Zhong, J. Yang, T. Gu, X. Xiao and M. Lu, 2011. Effects of temperature and partial pressure on H2S/CO2 corrosion of pipeline steel in sour conditions. Proceeding of the NACE International Conference (CORROSION/11). Houston, Texas.
  51. Zheng, Y., J. Ning, B. Brown and S. Nesic, 2014. Electrochemical model of mild steel corrosion in a mixed H2S/CO2 aqueous environment. Proceeding of the NACE International Conference (CORROSION/14), Paper No. 3907.
  52. Zirrahi, M., R. Azin, H. Hassanzadeh and M. Moshfeghian, 2012. Mutual solubility of CH4, CO2, H2S, and their mixtures in brine under subsurface disposal conditions. Fluid Phase Equilibr., 324: 80-93.

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved