Research Article | OPEN ACCESS
Optimization of the Production of a &beta-1, 4-endoglucanase from a Newly Isolated Bacillus sp.RL1 by Medium Optimization and Analysis Different Growth Parameters
1Rahman Laibi Chelab and 2Xingyong Yang
1Department of Biology, Education for Pure Sciences Faculty, Thi-Qar University, Iraq
2School of Life Sciences, Southwest University, Chongqing 400715, China
Research Journal of Applied Sciences, Engineering and Technology 2016 8:664-674
Received: May ‎17, ‎2016 | Accepted: June ‎28, ‎2016 | Published: October 15, 2016
Abstract
The aim of this study was for the production of extracellular endoglucanase by a novel new strain of Bacillus sp. RL1 isolated from soil was improved by medium optimization. A low cost source of &beta-1, 4-Endoglucanase (EG) with robust activity is of potential commercial value. Here, we identified a soil bacterial strain, Bacillus sp. RL1, as a potential source for EG with high temperature tolerance. The culture parameters, such as duration of incubation, incubation temperature, pH, carbon and nitrogen sources and agitation speed and additives, were optimized for enhancing EG yield. The optimal level of each parameter for maximum EG production by Bacillus sp. RL1 was determined. Results showed that the EG production was higher 4-folds with pineapple containing production medium, beef extract, shaking 200 rpm and CoCL2 and the incubation temperature, time course and pH were 35°C, 3rd day and 7.0 respectively, coparasion with basil medium (CMC). Thermal stability of EG was approximately 85.5% at 90°C for 30 min. The enzyme maintained stability over a wide range of pH from 4- 10. In addition optimized medium containing agricultural wastes pineapple combined with best two nitrogen sources (organic and inorganic nitrogen sources) showed significant activation on EG, FPase, glucosidase and xylanase were 18-folds, 6.5 –folds, 14- folds and 13- folds, respectively.
Keywords:
Bacillus sp. RL1, endoglucanase, new strain, optimization of enzyme production, pineapple,
References
-
Aa, K., R. Flengsrud, V. Lindahl and A. Tronsmo, 1994. Characterization of production and enzyme properties of an endo-beta-1,4- glucanase from Bacillus subtilis CK-2 isolated from compost soil. Anton. Leeuw., 66(4): 319-326.
-
Ariffin, H., N. Abdullah, M.S. Umi Kalsom,Y. Shirai and M.A. Hassan, 2006. Production and characterisation of cellulase by Bacillus pumilus EB3. Int. J. Eng. Technol., 3(1): 47-53.
-
Ariffin, H., M.A. Hassan, U.K. Shah, N. Abdullah, F.M. Ghazali and Y. Shirai, 2008. Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. J. Biosci. Bioeng., 106(3): 231-236.
CrossRef PMid:18929997 Direct Link -
Au, K.S. and K.Y. Chan, 1987. Purification and properties of the endo-1,4-ß-glucanase from Bacillus subtilis. J. Gen. Microbiol., 133(8): 2155-2162.
CrossRef -
Bailey, M.J., P. Biely and K. Poutanen, 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol., 23(3): 257-270.
CrossRef -
Bakare, M.K., I.O. Adewale, A. Ajayi and O.O. Shonukan, 2005. Purification and characterization of cellulase from the wild-type and two improved mutants of Pseudomonas fluorescens. Afr. J. Biotechnol., 4(9): 898-904.
Direct Link -
Bhat, M.K., 2000. Cellulases and related enzymes in biotechnology. Biotechnol. Adv., 18(5): 355-383.
CrossRef Direct Link -
Bijende, Bajaj, B.K., H. Pangotra, M.A. Wani, P. Sharma and A. Sharma, 2009. Partial purification and characterization of a highly thermostable and pH stable endoglucanase from a newly isolated Bacillus strain M-9. Indian J. Chem. Techn., 16: 382-387.
-
Bischoff, K.M., S. Liu and S.R. Hughes, 2007. Cloning and characterization of a recombinant family 5 endoglucanase from Bacillus licheniformis strain B-41361. Process Biochem., 42(7): 1150-1154.
CrossRef Direct Link -
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72(1-2): 248-254.
CrossRef PMid:942051 -
Cavaco-Paulo, A., 1998. Mechanism of cellulase action in textile processes. Carbohyd. Polym., 37(3): 273-277.
-
Chandra, M.S., B. Viswanath and B.R. Reddy, 2007. Cellulolytic enzymes on lignocellulosic substrates in solid state fermentation by Aspergillus Niger. Indian J. Microbiol., 47(4): 323-328.
CrossRef PMid:23100685 PMCid:PMC3450032 Direct Link -
Cherry, J.R. and A.L. Fidantsef, 2003. Directed evolution of industrial enzymes: An update. Curr. Opin. Biotech., 14(4): 438-443.
CrossRef -
Christakopoulos, P., D.G. Hatzinikolau, G. Fountoukidis, D. Kekos, M. Claeyssens and B.J. Macris, 1999. Purification and mode of action of an alkali-resistant endo-1, 4-beta-glucanase from Bacillus pumilus. Arch. Biochem. Biophys., 364(1): 61-66.
CrossRef PMid:10087165 Direct Link -
Das, A., S. Bhattacharya and L. Murali, 2010. Production of cellulase from a thermophilic Bacillus sp. isolated from cow dung. Am.-Eurasian J. Agric. Environ. Sci., 8(6): 685-691.
-
Dutta, T., R. Sahoo, R. Sengupta, S.S. Ray, A. Bhattacharjee and S. Ghosh, 2008. Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: Production and characterization. J. Ind. Microbiol. Biot., 35(4): 275-282.
CrossRef PMid:18210175 Direct Link -
Gao, J., H. Weng, D. Zhu, M. Yuan, F. Guan and Y. Xi, 2008. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresource Technol., 99(16): 7623-7629.
CrossRef PMid:18346891 Direct Link -
Gautam, S.P., P.S. Bundela, A.K. Pandey, Jamaluddin, M.K. Awasthi and S. Sarsaiya, 2010. Optimization of the medium for the production of cellulase by the Trichoderma viride using submerged fermentation. Int. J. Environ. Sci., 1(4): 656-665.
-
Heck, J.X., P.F. Hertz and M.A.Z. Ayub, 2002. Cellulase and xylanase productions by isolated Amazon Bacillus strains using soybean industrial residue based solid-state cultivation. Braz. J. Microbiol., 33(3): 213-218.
CrossRef Direct Link -
Immanuel, G., R. Dhanusha, P. Prema and A. Palavesam, 2006. Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. Int. J. Environ. Sci. Technol., 3(1): 25-34.
CrossRef Direct Link -
Immanuel, G., C. Bhagavath, P. Iyappa Raj, P. Esakkiraj and A. Palavesam, 2007. Production and partial purification of cellulase by Aspergillus niger and A. Fumigatus fermented in coir waste and sawdust. Int. J. Microbiol., 3(1).
Direct Link -
Kannan, N., 2003. Handbook of Laboratory Culture Media, Reagents, Stains and Buffers. Panima Publishing Corporation, New Delhi.
-
Kapoor, N., M. Tyagi, H. Kumar, A. Arya, M.A. Siddiqui, A. Amir and A.S. Malik, 2010. Production of cellulase enzyme by Chaetomium sp. using wheat straw in solid state fermentation. Res. J. Microbiol., 5(12): 1199-1206.
-
Kato, S., S. Haruta, Z.J. Cui, M. Ishii, A. Yokota and Y. Igarashi, 2004. Clostridium straminisolvens sp. Nov., A moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int. J. Syst. Evol. Micr., 54(Pt 6): 2043-2047.
-
Kaur, G. and T. Satyanarayana, 2004. Production of extracellular pectinolytic, cellulolytic and xylanoytic enzymes by thermophilic mould sporotrichum thermophile Apinis in solid state fermentation. Indian J. Biotechnol., 3(4): 552-557.
Direct Link -
Kaur, J., B.S. Chadha, B.A. Kumar and H.S. Saini, 2007. Purification and characterization of two endoglucanases from Melanocarpus sp. MTCC 3922. Bioresource Technol., 98(1): 74-81.
CrossRef PMid:16406512 Direct Link -
Khan, F.A.B.A. and A.A.S.A. Husaini, 2006. Enhancing a-amylase and cellulase in vivo enzyme expression on sago pith residue using Bacillus amyloliquefaciens UMAS 1002. Biotechnology, 5(3): 391-403.
CrossRef -
Lakshmikant, Kamal and S.N. Mathur, 1990. Cellulolytic activities of Chaetomium globosum on different cellulosic substrates. World. J. Microb. Biot., 6(1): 23-26.
CrossRef PMid:24429885 Direct Link -
Lee, J., 1997. Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol., 56(1): 1-24.
CrossRef Direct Link -
Lusterio, D.D., F.G. Suizo, N.M. Labunos, M.N. Valledor, S. Veda, S. Kawai, K. Koike, S. Shikata, T. Yoshimatsu and S. Ito, 1992. Alkali-resistant, alkaline endo-l,4-ß-glucanase produced by Bacillus sp. PKM-5430. Biosci. Biotech. Bioch., 56(10): 1671-1672.
-
Lynd, L.R., P.J. Weimer and I.S. Pretorius, 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. R., 66(3): 506-577.
CrossRef PMid:12209002 -
Mawadza, C., F.C. Boogerd, R. Zvauya and H.W. Verseveld, 1996. Influence of environmental factors on endo-beta-1,4-glucanase production by Bacillus HR68, isolated from a Zimbabwean hot spring. Anton. Leeuw., 69(4): 363-369.
-
Crispen, M., H.K. Rajni, Z. Remigio and M. Bo, 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol., 83(3): 177-187.
CrossRef -
Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 31(3): 426-428.
CrossRef -
Nizamudeen, S. and B.K. Bajaj, 2009. A novel thermo-alkalitolerant endoglucanase production using cost-effective agricultural residues as substrates by a newly isolated Bacillus sp. NZ. Food Technol. Biotech., 47(4): 435-440.
Direct Link -
Odeniyi, O.A., A.A. Onilude and M.A. Ayodele, 2009. Production characteristics and properties of cellulase/ polygalacturonase by a Bacillus coagulans strain from a fermenting palm-fruit industrial residue. Afr. J. Microbiol. Res., 3(8): 407-417.
Direct Link -
Ohmiya, K., K. Sakka, S. Karita and T. Kimura, 1997. Structure of cellulases and their applications. Biotechnol. Genet. Eng., 14(1): 365-414.
-
Okoshi, H., K. Ozaki, S. Shikata, K. Oshino, S. Kawai and S. Ito, 1990. Purification and characterization of multiple carboxymethyl cellulases from Bacillus sp. KSM-522. Agr. Biol. Chem. Tokyo, 54(1): 83-89.
-
Rajoka, M.I., 2004. Influence of various fermentation variables on exo-glucanase production in Cellulomonas flavigena. Electron. J. Biotechn., 7(3): 256-263.
CrossRef Direct Link -
Schallmey, M., A. Singh and O.P. Ward, 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol., 50(1): 1-17.
CrossRef PMid:15052317 -
Shabeb, M.S.A., M.A.M. Younis, F.F. Hezayen and M.A. Nour-Eldein, 2010. Production of cellulase in low-cost medium by Bacillus subtilis KO strain. World Appl. Sci. J., 8(1): 35-42.
Direct Link -
Singh, J., N. Batra and R.C. Sobti, 2004. Purification and characterisation of alkaline cellulase produced by a novel isolate, Bacillus sphaericus JS1. J. Ind. Microbiol. Biot., 31(2): 51-56.
CrossRef PMid:14758556 Direct Link -
Tolan, J.S. and B. Foody, 1999. Cellulase from Submerged Fermentation. In: Tsao, G.T., A.P. Brainard, H.R. Bungay et al. (Eds.), Recent Progress in Bioconversion of Lignocellulosics. Advances in Biochemical Engineering/Biotechnology, Springer, Berlin, Heidelberg, 65: 41-67.
CrossRef Direct Link -
Wang, C.Y., Y.R. Hsieh, C.C. Ng, H. Chan, H.T. Lin, W.S. Tzeng and Y.T. Shyu, 2009. Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU-05. Enzyme Microb. Tech., 44(6-7): 373-379.
-
Yoshimatsu, T., K. Ozaki, S. Shikata, Y. I. Ohta, K. Koike, S. Kawai and S. Ito, 1990. Purification and characterization of alkaline endo-1,4-b -glucanases from alkalophilic Bacillus sp. KSM-635. J. Gen. Microbiol., 136: 1973-1979.
CrossRef
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|