Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Study of Residual Stress Relaxation Mechanics Using a Micro-indent Method

1F.V. Diaz, 1C.A. Mammana and 2A.P.M. Guidobono
1Departamento de Ingeniería Electromecánica-Departamento de Ingeniería Industrial, Facultad Regional Rafaela, Universidad Tecnológica Nacional, Acuña 49, 2300 Rafaela, Argentina
2División Metrología Dimensional, Centro Regional Rosario (INTI), Ocampo y Esmeralda, 2000 Rosario, Argentina
Research Journal of Applied Sciences, Engineering and Technology  2016  11:835-842
http://dx.doi.org/10.19026/rjaset.13.3425  |  © The Author(s) 2016
Received: August 23, 2016  |  Accepted: October 12, 2016  |  Published: December 05, 2016

Abstract

The aim of this study is to show the feasibility and accuracy of a micro-indent method to comprehensively evaluate the relaxation mechanics of residual stress in specimens of rolled aluminium alloy. This micro-indent method was adapted to implement four annealing treatments. The residual displacements were measured using a high-accuracy measuring machine, which enables to decrease the absolute error down to ±300 nm. This study presents an innovative data analysis using Mohr's circles, which allowed to study all directions of the in- plane residual stress for different relaxation times. The results revealed that the relaxation process finishes when the residual stress relief is completed in some preferential directions and then, a brief stress recovery phase begins.

Keywords:

Aluminium alloy, micro-indentation, Mohr's circle, relaxation mechanics, residual stresses,


References

  1. Allen, A.J., M.T. Hutchings, C.G. Windsor and C. Andreani, 1985. Neutron diffraction methods for the study of residual stress fields. Adv. Phys., 34(4): 445-473.
    CrossRef    Direct Link
  2. Ashby, M.F., 1972. A first report on deformation-mechanism maps. Acta Metall., 20(7): 887-897.
    CrossRef    Direct Link
  3. Benedetti, M., V. Fontanari and B.D. Monelli, 2010. Plain fatigue resistance of shot peened high strength aluminium alloys: Effect of loading ratio. Proc. Eng., 2(1): 397-406.
    CrossRef    
  4. Bevington, P.R. and D.K. Robinson, 2003. Data Reduction and Error Analysis for the Physical Sciences. 3rd Edn., McGraw-Hill, Boston.
    Direct Link
  5. Bruin, W.D., 1982. Dimensional stability of materials for metrological and structural applications. CIRP Annals, 31(2): 553-560.
    CrossRef    Direct Link
  6. Busch, T., R. Harlow and R.L. Thompson, 1998. Fundamentals of Dimensional Metrology. Delmar Publishers, Albany, NY.
  7. Das, S. and U. Chandra, 2003. Residual Stress and Distortion. In: Totten, G.E. and D.S. Mac Kenzie (Eds.), Handbook of Aluminum. Vol. 1, Physical Metallurgy and Processes. Marcel Dekker Inc., New York, pp: 305-349.
    CrossRef    
  8. Dean, J., G. Aldrich-Smith and T.W. Clyne, 2011. Use of nanoindentation to measure residual stresses in surface layers. Acta Mater., 59(7): 2749-2761.
    CrossRef    Direct Link
  9. Díaz, F.V., G.H. Kaufmann and O. Möller, 2001. Residual stress determination using blind-hole drilling and digital speckle pattern interferometry with automated data processing. Exp. Mech., 41(4): 319-323.
    CrossRef    Direct Link
  10. Díaz, F.V., C.A. Mammana and A.P.M. Guidobono, 2015. Evaluation of residual stresses in low, medium and high speed milling. Res. J. Appl. Sci. Eng. Technol., 11: 252-258.
    CrossRef    Direct Link
  11. Farago, F.T. and M.A. Curtis, 1994. Handbook of Dimensional Measurement. 3rd Edn., Industrial Press Inc., New York.
  12. Fernández, P., R. Fernández, G. González-Doncel and G. Bruno, 2005. Correlation between matrix residual stress and composite yield strength in PM 6061Al–15 vol% SiCw. Scripta. Mater., 52(8): 793-797.
    CrossRef    Direct Link
  13. Hearn, E.J., 1997. Mechanics of Materials. Butterworth/Heinmann, Oxford.
    PMCid:PMC1184312    
  14. Juijerm, P., I. Altenberger and B. Scholtes, 2007. Influence of ageing on cyclic deformation behavior and residual stress relaxation of deep rolled as-quenched aluminium alloy AA6110. Int. J. Fatigue, 29(7): 1374-1382.
    CrossRef    Direct Link
  15. Lu, J., 1996. Handbook of Measurement of Residual Stresses. Fairmont Press Inc., Lilburn, GA.
  16. Luan, W., C. Jiang and V. Ji, 2009. Thermal relaxation of residual stresses in shot peened surface layer on TiB2/Al composite at elevated temperatures. Mater. Trans., 50(6): 1499-1501.
    CrossRef    Direct Link
  17. Noyan, I.C. and J.B. Cohen, 1987. Residual Stress: Measurement by Diffraction and Interpretation. Springer-Verlag, New York.
    CrossRef    
  18. Schoeck, G., 1961. Theories of Creep. In: Dorn, J.E. (Ed.), Mechanical Behavior of Materials at Elevated Temperatures. McGraw-Hill Book Company Inc., New York, pp: 79-107.
  19. Seifi, R. and D. Salimi-Majd, 2012. Effects of plasticity on residual stresses measurement by hole drilling method. Mech. Mater., 53: 72-79.
    CrossRef    Direct Link
  20. Timoshenko, S.P. and J.N. Goodier, 1970. Theory of Elasticity. 3rd Edn., McGraw-Hill, New York.
    CrossRef    
  21. Tiryakioglu, M. and J.T. Staley, 2003. Physical Metallurgy and the Effect of Alloying Additions in Aluminum Alloys. In: Totten, G.E. and D.S. Mac Kenzie (Eds.), Handbook of Aluminum. Vol. 1, Physical Metallurgy and Processes. Marcel Dekker Inc., New York, pp: 81-209.
    PMid:14701946    
  22. Van Boven, G., W. Chen and R. Rogge, 2007. The role of residual stress in neutral ph stress corrosion cracking of pipeline steels. Part I: Pitting and cracking occurrence. Acta Mater., 55(1): 29-42.
    CrossRef    Direct Link
  23. Withers, P.J. and H.K.D.H. Bhadeshia, 2001. Residual stress. Part 1 – Measurement techniques. Mater. Sci. Technol., 17(4): 355-365.
    CrossRef    Direct Link
  24. Wyatt, J.E. and J. Berry, 2006. A new technique for the determination of superficial residual stresses associated with machining and other manufacturing processes. J. Mater. Process. Tech., 171(1): 132-140.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved