Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Effect of Cu Metal of Nanoscale Particle Size on the Porosity and Mechanical Properties of Porous Alumina Ceramics using Yeast as a Pore Agent

1, 5Mohammed Sabah Ali, 1, 3M.A. Azmah Hanim, 1C.N.A. Jaafar, 1S.M. Tahir 2, 3M. Norkhairunnisa and 4Khamirul Amin Matori
1Department of Mechanical and Manufacturing Engineering
2Department of Aerospace Engineering, Faculty of Engineering
3Laboratory of Bio Composite Technology, Institute of Tropical Forestry and Forest Products
4Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
5Department of Agriculture Machinery and Equipment Engineering Techniques, Technical College, Al-Mussaib, Iraq
Research Journal of Applied Sciences, Engineering and Technology  2017  5:187-195
http://dx.doi.org/10.19026/rjaset.14.4288  |  © The Author(s) 2017
Received: November 29, 2016  |  Accepted: February 13, 2017  |  Published: May 15, 2017

Abstract

The main goal of this study is to determine the effect of the addition of Cu metal of nanoscale particle on the mechanical properties and porosity of porous alumina ceramics. Porous alumina reinforced ceramics were prepared using nanoscale Cu metal particles as their strengthening phase. Solid state and sacrificial techniques were used to prepare the porous alumina reinforced ceramics. A FESEM was used to analyse the microstructure. Different ratios of Cu metal were added (3 wt%, 6 wt%, 9 wt% and 12 wt% Cu) at different ratios of yeast used as a pore agent. The results indicated that with increasing the ratios of Cu metal, the porosity decreased and the mechanical properties increased. The increase in the mechanical properties could be attributed to the decrease in the porosity and the toughening mechanism of porous alumina ceramics. Some potential applications include, filtration, thermal and purging of gas.

Keywords:

Mechanical properties, nano-Cu metal, pore agent, porosity, porous ceramic, yeast,


References

  1. Ali, M.S., M.A.A. Hanim, S.M. Tahir, C.N.A. Jaafar, N. Mazlan and K.A. Matori, 2017. The effect of commercial rice husk ash additives on the porosity, mechanical properties, and microstructure of alumina ceramics. Adv. Mater. Sci. Eng., 8: 1-10.
    CrossRef    
  2. Alman, D.E. and J.A. Hawk, 2001. Abrasive wear behavior of a brittle matrix (MoSi2) composite reinforced with a ductile phase (Nb). Wear, 250(1-12): 890-900.
    Direct Link
  3. Boch, P. and J.C. Niepce, 2010. Ceramic Materials: Processes, Properties, and Applications. John Wiley & Sons, Hoboken.
    PMCid:PMC3003021    
  4. Callister Jr, W.D., 1997. Materials science and engineering: An introduction. In: Callister, Jr. And D. William (Eds.), Materials Science and Engineering: An Introduction. 4th Edn., John Wiley and Sons, Inc., pp: 499-501.
  5. Chen, R.Z. and W.H. Tuan, 2001. Toughening alumina with silver and zirconia inclusions. J. Eur. Ceram. Soc., 21(16): 2887-2893.
    CrossRef    
  6. Chou, W.B. and W.H. Tuan, 1995. Toughening and strengthening of alumina with silver inclusions. J. Eur. Ceram. Soc., 15(4): 291-295.
    CrossRef    
  7. Clegg, R.E. and G.D. Paterson, 2004. Ductile particle toughening of hydroxyapatite ceramics using platinum particles. Proceeding of the SIF Structural Integrity and Fracture International Conference (SIF'04).
  8. Dessai, R.R., J.A.E. Desa, D. Sen and S. Mazumder, 2013. Effects of pressure and temperature on pore structure of ceramic synthesized from rice husk: A small angle neutron scattering investigation. J. Alloys Compd., 564: 125-129.
    CrossRef    
  9. Ekström, T., 1993. Alumina ceramics with particle inclusions. J. Eur. Ceram. Soc., 11(6): 487-496.
    CrossRef    
  10. Eom, J.H., Y.W. Kim and S. Raju, 2013. Processing and properties of macroporous silicon carbide ceramics: A review. J. Asian Ceram. Soc., 1(3): 220-242.
    CrossRef    
  11. Falamaki, C., A. Aghaei and N.R. Ardestani, 2001. RBAO membranes/catalyst supports with enhanced permeability. J. Eur. Ceram. Soc., 21(12): 2267-2274.
    CrossRef    
  12. German, R.M., P. Suri and S.J. Park, 2009. Review: Liquid phase sintering. J. Mater. Sci., 44(1): 1-39.
    CrossRef    
  13. Gu, M., C. Huang, B. Zou and B. Liu, 2006. Effect of (Ni, Mo) and TiN on the microstructure and mechanical properties of TiB2 ceramic tool materials. Mat. Sci. Eng. A, 433(1-2): 39-44.
    CrossRef    
  14. Hammel, E.C., O.L.R. Ighodaro and O.I. Okoli, 2014. Processing and properties of advanced porous ceramics: An application based review. Ceram. Int., 40(10(PartA): 15351-15370.
    Direct Link
  15. Hu, L., R. Benitez, S. Basu, I. Karaman and M. Radovic, 2012. Processing and characterization of porous Ti 2 AlC with controlled porosity and pore size. Acta Mater., 60(18): 6266-6277.
    CrossRef    
  16. Jean, G., V. Sciamanna, M. Demuynck, F. Cambier and M. Gonon, 2014. Macroporous ceramics: Novel route using partial sintering of alumina-powder agglomerates obtained by spray-drying. Ceram. Int., 40(7(PartA): 10197-10203.
    Direct Link
  17. Ji, Y. and J.A. Yeomans, 2002. Processing and mechanical properties of Al2O3–5 vol.% Cr nanocomposites. J. Eur. Ceram. Soc., 22(12): 1927-1936.
    CrossRef    
  18. Kafkaslioglu, B. and Y.K. Tür, 2016. Pressureless sintering of Al2O3/Ni nanocomposites produced by heterogeneous precipitation method with varying nickel contents. Int. J. Refract. Met. H., 57: 139-144.
    CrossRef    
  19. Kennedy, G.P., K.Y. Lim, Y.W. Kim, I.H. Song and H.D. Kim, 2011. Effect of SiC particle size on flexural strength of porous self-bonded SiC ceramics. Met. Mater. Int., 17(4): 599-605.
    CrossRef    
  20. Lalande, J., S. Scheppokat, R. Janssen and N. Claussen, 2002. Toughening of alumina/zirconia ceramic composites with silver particles. J. Eur. Ceram. Soc., 22(13): 2165-2171.
    CrossRef    
  21. Latifi, H., A. Moradkhani, H. Baharvandi and J. Martikainen, 2014. Fracture toughness determination and microstructure investigation of a B4C–NanoTiB2 composite with various volume percent of Fe and Ni additives. Mater. Design, 62: 392-400.
    CrossRef    
  22. Li, G., Y. Fan, Y. Zheng and Y. Wu, 2010. Preparation and properties of high toughness RBAO macroporous membrane support. Ceram. Int., 36(7): 2025-2031.
    CrossRef    
  23. Lieberthal, M. and W.D. Kaplan, 2001. Processing and properties of Al2O3 nanocomposites reinforced with sub-micron Ni and NiAl2O4. Mater. Sci. Eng. A, 302(1): 83-91.
    CrossRef    
  24. Liu, D.M., 1997. Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramic. Ceram. Int., 23(2): 135-139.
    CrossRef    
  25. Liu, D.M. and W.H. Tuan, 1997. Microstructure and its influence on thermal and electrical conductivity of ZrO2–Ag composites. Mater. Chem. Phys., 48(3): 258-262.
    CrossRef    
  26. Liu, Y., J. Zhou and T. Shen, 2013. Effect of nano-metal particles on the fracture toughness of metal–ceramic composite. Mater. Design, 45: 67-71.
    CrossRef    
  27. Mashhadi, M., E. Taheri-Nassaj, M. Mashhadi and V.M. Sglavo, 2011. Pressureless sintering of B4C–TiB2 composites with Al additions. Ceram. Int., 37(8): 3229-3235.
    CrossRef    
  28. Menchavez, R.L. and L.A.S. Intong, 2010. Red clay-based porous ceramic with pores created by yeast-based foaming technique. J. Mater. Sci., 45(23): 6511-6520.
    CrossRef    
  29. Mohanta, K., A. Kumar, O. Parkash and D. Kumar, 2014. Processing and properties of low cost macroporous alumina ceramics with tailored porosity and pore size fabricated using rice husk and sucrose. J. Eur. Ceram. Soc., 34(10): 2401-2412.
    CrossRef    
  30. Oh, S.T., M. Sando, T. Sekino and K. Niihara, 1998. Processing and properties of copper dispersed alumina matrix nanocomposites. Nanostruct. Mater., 10(2): 267-272.
    CrossRef    
  31. Oh, U.C., Y.S. Chung, D.Y. Kim and D.N. Yoon, 1988. Effect of grain growth on pore coalescence during the liquid-phase sintering of MgO-CaMgSiO4 systems. J. Am. Ceram. Soc., 71(10): 854-857.
    CrossRef    
  32. Rong, S.F., Z.S. Ji, B.X. Ma, Y.C. Zhu and J.Q. Zhang, 2007. Effect of Cu on microstructure and properties of Al2O3 diphase ceramic. J. Iron Steel Res. Int., 14(5): 90-93.
    CrossRef    
  33. Rösler, J., H. Harders and M. Baeker, 2007. Mechanical Behaviour of Engineering Materials: Metals, Ceramics, Polymers, and Composites. Springer, Berlin, New York.
    Direct Link
  34. Rubinstein, A.A. and P. Wang, 1998. The fracture toughness of a particulate-reinforced brittle matrix. J. Mech. Phys. Solids, 46(7): 1139-1154.
    CrossRef    
  35. Sbaizero, O. and G. Pezzotti, 2001. Residual stresses and R-curve behavior of AlN/Mo composite. J. Eur. Ceram. Soc., 21(3): 269-275.
    CrossRef    
  36. Seeber, B.S.M., U.T. Gonzenbach and L.J. Gauckler, 2013. Mechanical properties of highly porous alumina foams. J. Mater. Res., 28(17): 2281-2287.
    CrossRef    
  37. Shaw, T.M., 1993. Model for the effect of powder packing on the driving force for liquid-phase sintering. J. Am. Ceram. Soc., 76(3): 664-670.
    CrossRef    
  38. Smirnov, A. and J.F. Bartolomé, 2014. Microstructure and mechanical properties of ZrO2 ceramics toughened by 5–20 vol% Ta metallic particles fabricated by pressureless sintering. Ceram. Int., 40(1(Part B): 1829-1834.
    Direct Link
  39. Tang, F., H. Fudouzi, T. Uchikoshi and Y. Sakka, 2004. Preparation of porous materials with controlled pore size and porosity. J. Eur. Ceram. Soc., 24(2): 341-344.
    CrossRef    
  40. Veljovic, D., R. Jancic-Hajneman, I. Balac, B. Jokic, S. Putic, R. Petrovic and D. Janackovic, 2011. The effect of the shape and size of the pores on the mechanical properties of porous HAP-based bioceramics. Ceram. Int., 37(2): 471-479.
    CrossRef    
  41. Wang, S.R., H.R. Geng, L.H. Hui and Y.Z. Wang, 2007. Reticulated porous multiphase ceramics with improved compressive strength and fracture toughness. J. Mater. Eng. Perform., 16(1): 113-118.
    CrossRef    
  42. Yu, P.P., J.Z. Wang, F.L. Yu and J.F. Yang, 2011. Effect of pure ß-Si3N4 powder on microstructure and mechanical properties of porous Si3N4 ceramics. IOP Conf. Ser-Mat. Sci., 20(1).
    Direct Link
  43. Zhang, J. and J. Malzbender, 2015. Mechanical characterization of micro- and nano-porous alumina. Ceram. Int., 41(9(Part A): 10725-10729.
    Direct Link
  44. Zhang, R., D. Fang, X. Chen and Y. Pei, 2012. Effect of pre-oxidation on the microstructure, mechanical and dielectric properties of highly porous silicon nitride ceramics. Ceram. Int., 38(7): 6021-6026.
    CrossRef    
  45. Zhou, J., J.P. Fan, G.L. Sun, J.Y. Zhang, X.M. Liu, D.H. Zhang and H.J. Wang, 2015. Preparation and properties of porous silicon nitride ceramics with uniform spherical pores by improved pore-forming agent method. J. Alloy. Compd., 632: 655-660.
    CrossRef    
  46. Zuo, K.H., D.L. Jiang, Q.L. Lin and Y.P. Zeng, 2007. Improving the mechanical properties of Al2O3/Ni laminated composites by adding Ni particles in Al2O3 layers. Mater. Sci. Eng. A, 443(1-2): 296-300.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved