Research Article | OPEN ACCESS
Using a Novel MucorindicusCBS 226.29 ET for Biosynthesis of Gold Nanoparticles and Applying them in Nanoremediation of Azo Dyes
A.N.Z.Alshehri
Department of Biology, University College in Al-Jummum, Umm Al-Qura University, Makkah, 21955, Kingdom of Saudi Arabia
Research Journal of Applied Sciences, Engineering and Technology 2018 5:197-205
Received: February 5, 2018 | Accepted: February 25, 2018 | Published: May 15, 2018
Abstract
Fungus of MucorindicusCBS 226.29 ET, in this study was used to synthesize gold nanoparticles (AuNPs). Synthesis of nanoparticles by microorganisms may offer an environmentally friendly and affordable alternative to traditional physical and chemical methods. The microbial synthesis of nanoparticles is an approach based on green chemistry which mutually connects microbial biotechnology and nanotechnology. A surface level plasmon resonance peak was observed at 500 nm by UV-bis spectra of AuNPs. Images of AuNP via transmission electron microscope exhibited various shapes and dispersibility characteristics. The synthesis of AuNPs were optimum at the conditions 1.5 mM/L of HAuCl4, 0.6 g biomass and pH range 7-11. The decolorization of different azo dyes was catalyzed efficiently with the bio-AuNPs and a new microbial resource candidate was thus demonstrated for these AuNPs through green synthesis, along with a potential bio-AuNP application for decolorization of azo dyes.
Keywords:
Azo dyes, biosynthesis, decolorization, gold nanoparticles, Mucorindicus,
References
-
Bastús, N.G., J. Comenge and V. Puntes, 2011. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus Ostwald ripening. Langmuir, 27(17): 11098-11105.
CrossRef PMid:21728302
-
Bhumkar, D.R., H.M. Joshi, M. Sastry and V.B. Pokharkar, 2007. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm. Res., 24(8): 1415-1426.
CrossRef PMid:17380266
-
Champagne, P.P. and J.A. Ramsay, 2010. Dye decolorization and detoxification by laccase immobilized on porous glass beads. Bioresource Technol., 101(7): 2230-2235.
CrossRef PMid:20015643
-
Chen, X., G. Sun and M. Xu, 2011. Role of iron in azoreduction by resting cells of Shewanella decolorationis S12. J. Appl. Microbiol., 110(2): 580-586.
CrossRef PMid:21159097
-
Das, S.K., A.R. Das and A.K. Guha, 2010. Microbial synthesis of multishaped gold nanostructures. Small, 6(9): 1012-1021.
CrossRef PMid:20376859
-
dos Santos, A.B., F.J. Cervantes and J.B. van Lier, 2007. Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresource Technol., 98(12): 2369-2385.
CrossRef PMid:17204423
-
Du, L.W., L. Xian and J.X. Feng, 2011. Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J. Nanopart. Res., 13(3): 921-930.
CrossRef
-
Fang, Y., M. Xu, W.M. Wu, X. Chen, G. Sun, J. Guo et al., 2015. Characterization of the enhancement of zero valent iron on microbial azo reduction. BMC Microbiol., 15(1): 85.
CrossRef PMid:25888062 PMCid:PMC4428006
-
Gericke, M. and A. Pinches, 2006. Biological synthesis of metal nanoparticles. Hydrometallurgy, 83(1-4): 132-140.
CrossRef
-
Girard, V., C. Dieryckx, C. Job and D. Job, 2013. Secretomes: The fungal strike force. Proteomics, 13(3-4): 597-608.
CrossRef PMid:23349114
-
Gomi, N., S. Yoshida, K. Matsumoto, M. Okudomi, H. Konno, T. Hisabori et al., 2011. Degradation of the synthetic dye amaranth by the fungus Bjerkandera adusta Dec 1: Inference of the degradation pathway from an analysis of decolorized products. Biodegradation, 22(6): 1239-1245.
CrossRef PMid:21526388
-
Gong, J.L. and C.B. Mullins, 2009. Surface science investigations of oxidative chemistry on gold. Acc. Chem. Res., 42(8): 1063-1073.
CrossRef PMid:19588952
-
Haiss, W., N.T.K. Thanh, J. Aveyard and D.G. Fernig, 2007. Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal. Chem., 79(11): 4215-4221.
CrossRef PMid:17458937
-
Kalishwaralal, K., V. Deepak, S.R.K. Pandian and S. Gurunathan, 2009. Biological synthesis of gold nanocubes from Bacillus licheniformis. Bioresource Technol., 100(21): 5356-5358.
CrossRef PMid:19574037
-
Kim, K.W., 2008. Vapor fixation of intractable fungal cells for simple and versatile scanning electron microscopy. J. Phytopathol., 156(02): 125-128.
CrossRef
-
Kitching, M., M. Ramani and E. Marsili, 2015. Fungal biosynthesis of gold nanoparticles: Mechanism and scale up. Microb. Biotechnol., 8(6): 904-917.
CrossRef PMid:25154648 PMCid:PMC4621444
-
Kreibig, U. and L. Genzel, 1985. Optical absorption of small metallic particles. Surf. Sci., 156: 678-700.
CrossRef
-
Kuang, Y., Y. Zhou, Z. Chen, M. Megharaj and R. Naidu, 2013. Impact of Fe and Ni/Fe nanoparticles on biodegradation of phenol by the strain Bacillus fusiformis (BFN) at various pH values. Bioresource Technol., 136: 588-594.
CrossRef PMid:23567735
-
MeenaKumari, M. and D. Philip, 2015. Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts. Spectrochim. Acta A, 135: 632-638.
CrossRef PMid:25128675
-
Mishra, A., M. Kumari, S. Pandey, V. Chaudhry, K.C. Gupta and C.S. Nautiyal, 2014. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresource Technol., 166: 235-242.
CrossRef PMid:24914997
-
Mishra, A., S.K. Tripathy and S.I. Yun, 2011. Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J. Nanosci. Nanotechnol., 11(1): 243-248.
CrossRef PMid:21446434
-
Morin-Sardin, S., P. Nodet, E. Coton and J.L. Jany, 2017. Mucor. A janus-faced fungal genus with human health impact and industrial applications. Fungal Biol. Rev., 31(1): 12-32.
CrossRef
-
Narayanan, K.B. and N. Sakthivel, 2010. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interfac., 156(1-2): 1-13.
CrossRef PMid:20181326
-
Pimprikar, P.S., S.S. Joshi, A.R. Kumar, S.S. Zinjarde and S.K. Kulkarni, 2009. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloid. Surface. B, 74(1): 309-316.
CrossRef PMid:19700266
-
Qu, Y.Y., S.N. Shi, F. Ma and B. Yan, 2010. Decolorization of reactive dark blue K-R by the synergism of fungus and bacterium using response surface methodology. Bioresource Technol., 101(21): 8016-8023.
CrossRef PMid:20566285
-
Shedbalkar, U., R. Singh, S. Wadhwani, S. Gaidhani and B.A. Chopade, 2014. Microbial synthesis of gold nanoparticles: Current status and future prospects. Adv. Colloid Interfac., 209: 40-48.
CrossRef PMid:24456802
-
Shukla, R., V. Bansal, M. Chaudhary, A. Basu, R.R. Bhonde and M. Sastry, 2005. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir, 21(23): 10644-10654.
CrossRef PMid:16262332
-
Song, J.Y., H.K. Jang and B.S. Kim, 2009. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem., 44(10): 1133-1138.
CrossRef
-
Sujitha, M.V. and S. Kannan, 2013. Green synthesis of gold nanoparticles using citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim. Acta A, 102: 15-23.
CrossRef PMid:23211617
-
Tan, L., S.X. Ning, X.W. Zhang and S.N. Shi, 2013. Aerobic decolorization and degradation of azo dyes by growing cells of a newly isolated yeast Candida tropicalis TL-F1. Bioresource Technol., 138: 307-313.
CrossRef PMid:23624048
-
Tony, B.D., D. Goyal and S. Khanna, 2009. Decolorization of textile azo dyes by aerobic bacterial consortium. Int. Biodeter. Biodegr., 63(4): 462-469.
CrossRef
-
Vahabi, K., G.A. Mansoori and S. Karimi, 2011. Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences J., 1(1): 65-79.
CrossRef
-
Xu, M.Y., J. Guo, X. Kong, X. Chen and G. Sun, 2007. Fe(III)-enhanced azo reduction by Shewanella decolorationis S12. Appl. Microbiol. Biot., 74(6): 1342-1349.
CrossRef PMid:17216448
-
Zhang, X., S. Yan, R.D. Tyagi and R.Y. Surampalli, 2011. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere, 82(4): 489-494.
CrossRef PMid:21055786
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
 |
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
 |
Information |
|
|
|
Sales & Services |
|
|
|