Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Using a Novel MucorindicusCBS 226.29 ET for Biosynthesis of Gold Nanoparticles and Applying them in Nanoremediation of Azo Dyes

A.N.Z.Alshehri
Department of Biology, University College in Al-Jummum, Umm Al-Qura University, Makkah, 21955, Kingdom of Saudi Arabia
Research Journal of Applied Sciences, Engineering and Technology  2018  5:197-205
http://dx.doi.org/10.19026/rjaset.15.5852  |  © The Author(s) 2018
Received: February 5, 2018  |  Accepted: February 25, 2018  |  Published: May 15, 2018

Abstract

Fungus of MucorindicusCBS 226.29 ET, in this study was used to synthesize gold nanoparticles (AuNPs). Synthesis of nanoparticles by microorganisms may offer an environmentally friendly and affordable alternative to traditional physical and chemical methods. The microbial synthesis of nanoparticles is an approach based on green chemistry which mutually connects microbial biotechnology and nanotechnology. A surface level plasmon resonance peak was observed at 500 nm by UV-bis spectra of AuNPs. Images of AuNP via transmission electron microscope exhibited various shapes and dispersibility characteristics. The synthesis of AuNPs were optimum at the conditions 1.5 mM/L of HAuCl4, 0.6 g biomass and pH range 7-11. The decolorization of different azo dyes was catalyzed efficiently with the bio-AuNPs and a new microbial resource candidate was thus demonstrated for these AuNPs through green synthesis, along with a potential bio-AuNP application for decolorization of azo dyes.

Keywords:

Azo dyes, biosynthesis, decolorization, gold nanoparticles, Mucorindicus,


References

  1. Bastús, N.G., J. Comenge and V. Puntes, 2011. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus Ostwald ripening. Langmuir, 27(17): 11098-11105.
    CrossRef    PMid:21728302    
  2. Bhumkar, D.R., H.M. Joshi, M. Sastry and V.B. Pokharkar, 2007. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm. Res., 24(8): 1415-1426.
    CrossRef    PMid:17380266    
  3. Champagne, P.P. and J.A. Ramsay, 2010. Dye decolorization and detoxification by laccase immobilized on porous glass beads. Bioresource Technol., 101(7): 2230-2235.
    CrossRef    PMid:20015643    
  4. Chen, X., G. Sun and M. Xu, 2011. Role of iron in azoreduction by resting cells of Shewanella decolorationis S12. J. Appl. Microbiol., 110(2): 580-586.
    CrossRef    PMid:21159097    
  5. Das, S.K., A.R. Das and A.K. Guha, 2010. Microbial synthesis of multishaped gold nanostructures. Small, 6(9): 1012-1021.
    CrossRef    PMid:20376859    
  6. dos Santos, A.B., F.J. Cervantes and J.B. van Lier, 2007. Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresource Technol., 98(12): 2369-2385.
    CrossRef    PMid:17204423    
  7. Du, L.W., L. Xian and J.X. Feng, 2011. Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J. Nanopart. Res., 13(3): 921-930.
    CrossRef    
  8. Fang, Y., M. Xu, W.M. Wu, X. Chen, G. Sun, J. Guo et al., 2015. Characterization of the enhancement of zero valent iron on microbial azo reduction. BMC Microbiol., 15(1): 85.
    CrossRef    PMid:25888062 PMCid:PMC4428006    
  9. Gericke, M. and A. Pinches, 2006. Biological synthesis of metal nanoparticles. Hydrometallurgy, 83(1-4): 132-140.
    CrossRef    
  10. Girard, V., C. Dieryckx, C. Job and D. Job, 2013. Secretomes: The fungal strike force. Proteomics, 13(3-4): 597-608.
    CrossRef    PMid:23349114    
  11. Gomi, N., S. Yoshida, K. Matsumoto, M. Okudomi, H. Konno, T. Hisabori et al., 2011. Degradation of the synthetic dye amaranth by the fungus Bjerkandera adusta Dec 1: Inference of the degradation pathway from an analysis of decolorized products. Biodegradation, 22(6): 1239-1245.
    CrossRef    PMid:21526388    
  12. Gong, J.L. and C.B. Mullins, 2009. Surface science investigations of oxidative chemistry on gold. Acc. Chem. Res., 42(8): 1063-1073.
    CrossRef    PMid:19588952    
  13. Haiss, W., N.T.K. Thanh, J. Aveyard and D.G. Fernig, 2007. Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal. Chem., 79(11): 4215-4221.
    CrossRef    PMid:17458937    
  14. Kalishwaralal, K., V. Deepak, S.R.K. Pandian and S. Gurunathan, 2009. Biological synthesis of gold nanocubes from Bacillus licheniformis. Bioresource Technol., 100(21): 5356-5358.
    CrossRef    PMid:19574037    
  15. Kim, K.W., 2008. Vapor fixation of intractable fungal cells for simple and versatile scanning electron microscopy. J. Phytopathol., 156(02): 125-128.
    CrossRef    
  16. Kitching, M., M. Ramani and E. Marsili, 2015. Fungal biosynthesis of gold nanoparticles: Mechanism and scale up. Microb. Biotechnol., 8(6): 904-917.
    CrossRef    PMid:25154648 PMCid:PMC4621444    
  17. Kreibig, U. and L. Genzel, 1985. Optical absorption of small metallic particles. Surf. Sci., 156: 678-700.
    CrossRef    
  18. Kuang, Y., Y. Zhou, Z. Chen, M. Megharaj and R. Naidu, 2013. Impact of Fe and Ni/Fe nanoparticles on biodegradation of phenol by the strain Bacillus fusiformis (BFN) at various pH values. Bioresource Technol., 136: 588-594.
    CrossRef    PMid:23567735    
  19. MeenaKumari, M. and D. Philip, 2015. Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts. Spectrochim. Acta A, 135: 632-638.
    CrossRef    PMid:25128675    
  20. Mishra, A., M. Kumari, S. Pandey, V. Chaudhry, K.C. Gupta and C.S. Nautiyal, 2014. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresource Technol., 166: 235-242.
    CrossRef    PMid:24914997    
  21. Mishra, A., S.K. Tripathy and S.I. Yun, 2011. Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J. Nanosci. Nanotechnol., 11(1): 243-248.
    CrossRef    PMid:21446434    
  22. Morin-Sardin, S., P. Nodet, E. Coton and J.L. Jany, 2017. Mucor. A janus-faced fungal genus with human health impact and industrial applications. Fungal Biol. Rev., 31(1): 12-32.
    CrossRef    
  23. Narayanan, K.B. and N. Sakthivel, 2010. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interfac., 156(1-2): 1-13.
    CrossRef    PMid:20181326    
  24. Pimprikar, P.S., S.S. Joshi, A.R. Kumar, S.S. Zinjarde and S.K. Kulkarni, 2009. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloid. Surface. B, 74(1): 309-316.
    CrossRef    PMid:19700266    
  25. Qu, Y.Y., S.N. Shi, F. Ma and B. Yan, 2010. Decolorization of reactive dark blue K-R by the synergism of fungus and bacterium using response surface methodology. Bioresource Technol., 101(21): 8016-8023.
    CrossRef    PMid:20566285    
  26. Shedbalkar, U., R. Singh, S. Wadhwani, S. Gaidhani and B.A. Chopade, 2014. Microbial synthesis of gold nanoparticles: Current status and future prospects. Adv. Colloid Interfac., 209: 40-48.
    CrossRef    PMid:24456802    
  27. Shukla, R., V. Bansal, M. Chaudhary, A. Basu, R.R. Bhonde and M. Sastry, 2005. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir, 21(23): 10644-10654.
    CrossRef    PMid:16262332    
  28. Song, J.Y., H.K. Jang and B.S. Kim, 2009. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem., 44(10): 1133-1138.
    CrossRef    
  29. Sujitha, M.V. and S. Kannan, 2013. Green synthesis of gold nanoparticles using citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim. Acta A, 102: 15-23.
    CrossRef    PMid:23211617    
  30. Tan, L., S.X. Ning, X.W. Zhang and S.N. Shi, 2013. Aerobic decolorization and degradation of azo dyes by growing cells of a newly isolated yeast Candida tropicalis TL-F1. Bioresource Technol., 138: 307-313.
    CrossRef    PMid:23624048    
  31. Tony, B.D., D. Goyal and S. Khanna, 2009. Decolorization of textile azo dyes by aerobic bacterial consortium. Int. Biodeter. Biodegr., 63(4): 462-469.
    CrossRef    
  32. Vahabi, K., G.A. Mansoori and S. Karimi, 2011. Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences J., 1(1): 65-79.
    CrossRef    
  33. Xu, M.Y., J. Guo, X. Kong, X. Chen and G. Sun, 2007. Fe(III)-enhanced azo reduction by Shewanella decolorationis S12. Appl. Microbiol. Biot., 74(6): 1342-1349.
    CrossRef    PMid:17216448    
  34. Zhang, X., S. Yan, R.D. Tyagi and R.Y. Surampalli, 2011. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere, 82(4): 489-494.
    CrossRef    PMid:21055786    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved