Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Treatment of Dairy Effluents in Biological Fluidized-Bed Reactors using Oyster Shells as Ecological Garnishing

1Amal Aitcheikh, 1Nadia Boutaleb, 1, 2Bouchaib Bahlaouan, 3Mohammed Bennani, Said Lazar and 1Said EL Antri
1Laboratory of Biochemistry, Environment and AgriFood, (URAC36), University Hassan II of Casablanca 20650, Morocco
2Higher Institutes of the Nursing Professions and Techniques of Health (ISPITS), Casablanca 22500, Morocco
3Pasteur Institute of Morocco, Microbiological and Physicochemical Quality Control Laboratory for Water and Food, Casablanca 20250, Morocco
Research Journal of Applied Sciences, Engineering and Technology  2018  10:362-369
http://dx.doi.org/10.19026/rjaset.15.5975  |  © The Author(s) 2018
Received: July 10, 2018  |  Accepted: August 6, 2018  |  Published: October 15, 2018

Abstract

We investigated the effectiveness of a new ecological garnishing of natural origins in MBBR reactors: The shells of oysters, used for the biological treatment of dairy effluents, in the presence of fungi Aspergillus niger and Penicillium chrysogenum. The abatement performance of organic matter was compared with the same bioreactor design in the presence of a common reference support (Kaldnes K3), conventionally used on an industrial scale. Pollution parameter monitoring results (Chemical Oxygen Demand COD, total nitrogen soluble NKT, phosphorus P, suspended matter SM and biochemical oxygen demand BOD5) obtained using oyster shells as garnishing media, are favorable after only 24 h of biological treatment. Organic matter removal efficiencies are comparable sometimes even better than K3 media. All the results show that oyster shells can provide an ecological support for biofilm colonization in MBBR reactors and allow for a satisfactory pollution abatement rate.

Keywords:

Biofilm, biological fluidized-bed reactors, biological treatment, dairy effluents, ecological garnissing, oyster shells,


References

  1. Aitcheikh, A., N. Boutaleb, B. Bahlaouan, A. El Jaafari, T. Taiek et al., 2014. Dairy wastewater treatment in moving bed biofilm reactor using sardine's scales as biomass support. Int. J. Eng. Res. Tech., 3(11): 1036-1040.
    Direct Link
  2. Akkaoui, O., O. El Rhaouat, C. Fraine M. Najy, K. El Kharrim and D. Belghyti, 2017. Note sur la qualité des eaux souterraines des sources d'Oulmes Maroc. Int. J. Innovat. Appl. Stud., 19(2): 396-400.
    Direct Link
  3. Andreottola, G., P. Foladori, M. Ragazzi and R. Villa, 2002. Dairy wastewater treatment in a moving bed biofilm reactor. Water Sci. Technol., 45(12): 321-328.
    CrossRef    PMid:12201118    
  4. Ani, J.U., M.C. Menkitim and O.D. Onukwuli, 2011. Coagulation-flocculation performance of snail biomass for waste water purification. New York Sci. J., 4(2): 81-90.
  5. Anwar, M.N., V. Ravindran, P.C.H. Morel, G. Ravindran and A.J. Cowieson, 2017. Effect of calcium source and particle size on the true ileal digestibility and total tract retention of calcium in broiler chickens. Anim. Feed Sci. Tech., 224: 39-45.
    CrossRef    
  6. Bae, T.H., S.S. Han and T.M. Tak, 2003. Membrane sequencing batch reactor system for the treatment of dairy industry wastewater. Process Biochem., 39(2): 221-231.
    CrossRef    
  7. Bassin, J.P. and M. Dezotti, 2018. Moving Bed Biofilm Reactor (MBBR). Advanced Biological Processes for Wastewater Treatment pp: 37-74.
    CrossRef    
  8. Behera, B.K. and A. Varma, 2017. Concept of microbiological processes. In: Microbial Biomass Process Technologies and Management. Springer, Cham, pp: 1-43.
    CrossRef    
  9. Boutaleb, N., H. Latrache and O. Sire, 2008. Bioadh&3233;sion bactérienne dans les réseaux d'eau potable: Effets des matériaux et des facteurs environnementaux. Tech. Sci. Méthodes, 5(mai): 37-42.
    CrossRef    
  10. Broch-Due, A., R. Andersen and B. Opheim, 1997. Treatment of integrated newsprint mill wastewater in moving bed biofilm reactors. Water Sci. Technol., 35(2-3): 173-180.
    CrossRef    
  11. Crini, G., 2006. Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technol., 97(9): 1061-1085.
    CrossRef    PMid:15993052    
  12. Djelal, H. and A. Amrane, 2013. Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab-scale and on a pilot-scale. J. Environ. Sci., 25(9): 1906-1912.
    CrossRef    
  13. Djelal, H., M. Perrot and D. Grisard, 2007. Utilisation de champignons spécifiques pour la biodégradation d'effluents industriels. L'Eau l'Industrie les Nuisances, 306(nov): 85-91.
  14. El Jaâfari, A., N. Boutaleb, B. Bahlaouan, T. Taiek, M. Bennani, S. Lazar and S. El Antri, 2014a. Conception d'un bioréacteur à lit mobile pour le traitement biologique des effluents des laiteries. L'Eau, l'Industrie, les Nuisances, 375(oct): 65-69.
  15. El Jaafari, A., N. Boutaleb, B. Bahlaouan, T. Taiek, M. Bennani, S. Lazar and S. El Antri, 2014b. Use of three types of fish scales as biomass support in moving bed biofilm reactor for biological treatment of dairy wastewater. Int. J. Eng. Res. Technol., 3(8): 1636-1639.
  16. El Jaâfari, A., N. Boutaleb, B. Bahlaouan, T. Taiek, A. Ait Cheikh, A. Jada, M. Bennani, S. Lazar and S. El Antri, 2015. Ecailles de poissons: Nouveau support de biomasse dans les bioréacteurs à lit mobile pour le traitement des effluents des laiteries. Déchets Sciences et Techniques, 70(nov): 29-37.
  17. El Jaafari, A., N. Boutaleb, B. Bahlaouan, A. Aitcheikh, T. Taiek, A. Jada, S. Lazar and S. El Antri, 2016. Biodegradation of dairy wastewater by the use of fish scales as packing in moving bed bioreactors. J. Colloid Sci. Biotechnol., 5(2): 218-222.
    CrossRef    
  18. Esteban, A., M.L. Abarca, M.R. Bragulat and F.J. Cabanes, 2006. Effect of pH on ochratoxin A production by Aspergillus niger aggregate species. Food Addit. Contam., 23(6): 616-622.
    CrossRef    PMid:16766460    
  19. Geary, P.M. and J.A. Moore, 1999. Suitability of a treatment wetland for dairy wastewaters. Water Sci. Technol., 40(3): 179-185.
    CrossRef    
  20. Hazourli, S., L. Boudiba and M. Ziati, 2007. Caractérisation de la pollution des eaux résiduaires de la zone industrielle d'El-Hadjar, Annaba. Larhyss J., 6: 45-55.
    Direct Link
  21. Jatto, E.O., I.O. Asia and F. Egharevba, 2013. Kinetic studies of wastewater treatment from pharmaceutical industry, using snail shell powder. Int. J. Adv. Res., 1(1): 47-56.
  22. Kassuwi, S.A.A., A.M. Mshandete and A.K. Kivaisi, 2013. Nile perch fish scales a novel biofilm carrier in the anaerobic digestion of biological pre-treated Nile perch fish solid waste. ARPN J. Eng. Appl. Sci., 8(2): 117-127.
  23. Kubota, H., S. Senda, N. Nomura, H. Tokuda and H. Uchiyama, 2008. Biofilm formation by lactic acid bacteria and resistance to environmental stress. J. Biosci. Bioeng., 106(4): 381-386.
    CrossRef    PMid:19000615    
  24. Ladeira Ázar, R.I.S., T. Morgan, A.C.F. Dos Santos, E. de Aquino Ximenes, M.R. Ladisch and V.M. Guimarães, 2018. Deactivation and activation of lignocellulose degrading enzymes in the presence of laccase. Enzyme Microb. Tech., 109: 25-30.
    CrossRef' target='_blank'>CrossRef    PMid:29224623    
  25. Louaste, B., L. Boudine, N. Eloutassi and M. Chaouch, 2014. Traitement biologique de l'effluent liquide issu de l'industrie laitiere par des champignons exogenes. Int. J. Innovat. Appl. Stud., 7(4): 1551-1559.
  26. Mannan, S., A. Fakhru'l-Razi and M.Z. Alam, 2005. Use of fungi to improve bioconversion of activated sludge. Water Res., 39(13): 2935-2943.
    CrossRef    PMid:16000208    
  27. Marie, B., G. Luquet, L. Bédouet, C. Milet, N. Guichard, D. Medakovic and F. Marin, 2008. Nacre calcification in the freshwater mussel Unio pictorum: Carbonic anhydrase activity and purification of a 95 kDa calcium-binding glycoprotein. ChemBiochem., 9(15): 2515-2523.
    CrossRef    PMid:18810748    
  28. Mendes, G.O., A. Galvez, M. Vassileva and N. Vassilev, 2017. Fermentation liquid containing microbially solubilized P significantly improved plant growth and P uptake in both soil and soilless experiments. Appl. Soil Ecol., 117-118: 208-211.
    CrossRef    
  29. Meunier, N., J.F. Blais and R.D. Tyagi, 2002. Selection of a natural sorbent to remove toxic metals from acidic leachate produced during soil decontamination. Hydrometallurgy, 67(1-3): 19-30.
    CrossRef    
  30. Owen, S.P. and M.J. Jonson, 1955. The effect of temperature changes on the production of penicillin by Penicillium chrysogenum W49-133. Appl. Microbiol., 3(6): 375-379.
    PMid:13269092 PMCid:PMC1057142    
  31. Pal Shailesh, R., S. Dipak Vyas and N. Arti Pamnani, 2016. Study the efficiency of Moving Bed Bio-Film Reactor (MBBR) for dairy wastewater treatment. Int. J. Adv. Res. Innovat. Ideas Edu., 2(3): 899-905.
    Direct Link
  32. Rodier, J., 2016. L'analyse de l'eau-Eaux naturelles, eaux résiduaires, eau de mer (10e édition). Technique et Ingénierie, Dunod.
  33. Shin, D.H., W.S. Shin, Y.H. Kim, M.H. Han and S.J. Choi, 2006. Application of a combined process of moving-bed biofilm reactor (MBBR) and chemical coagulation for dyeing wastewater treatment. Water Sci. Technol., 54(9): 181-189.
    CrossRef    PMid:17163056    
  34. Stepnowski, P., G. Olafsson, H. Helgason and B. Jastorff, 2004. Recovery of astaxanthin from seafood wastewater utilizing fish scales waste. Chemosphere, 54(3): 413-417.
    CrossRef    
  35. Wang, W.N., A.L Wang, L. Chen, Y. Liu, R.Y. Sun, 2002. Effects of pH on survival, phosphorus concentration, adenylate energy charge and Na+-K+ ATPase activities of Penaeus chinensis Osbeck juveniles. Aquat. Toxicol., 60(1-2): 75-83.
    CrossRef    
  36. Wolski, E.A., I. Durruty, P.M. Haure and J.F. Gonzalez, 2012. Penicillium chrysogenum: Phenol degradation abilities and kinetic model. Water Air Soil Pollut., 223(5): 2323-2332.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved