Research Article | OPEN ACCESS
Numerical Study on the Influence of Different Waving Bottom Form on the Fluid Surface Wave
Songling Wang, Mei Liu, Yongxin Zhu and Zhengren Wu
School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China
Research Journal of Applied Sciences, Engineering and Technology 2013 23:5478-5483
Received: December 08, 2012 | Accepted: January 19, 2013 | Published: May 28, 2013
Abstract
In the present study, the effect of waving bottom on the surface wave is studied. Basing on the fundamental equations of potential flow theory and boundary conditions, using the multiple scales perturbation method to derive the first-order and the second-order approximate equation which the fluid surface waves satisfied in the presence of waving bottom. Under the second-order approximation, the fluid surface waveform in first-order approximate equation is numerically simulated with MATLAB in the presence of different waving bottom form. The results show that: the fluid surface waveform is composed of a harmonic wave which has the same frequency with waving bottom and a pair of KdV solitary waves that spread to both the right and the left side when the waving bottom wave is a harmonic wave; and when the waving bottom is a solitary wave packet, it consists of a solitary wave which is closely related to the specific form of waving bottom and a couple of KdV solitary waves. With the development of time, three waves in fluid surface do not affect each other and they propagate independently. Thus it can be seen the waving bottom is effective for maintaining surface wave energy balance income and expenditure in the spreading process.
Keywords:
Multiple scales perturbation method, numerical simulation, surface wave, waving bottom,
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|