Research Article | OPEN ACCESS
Design and Simulation of Jet-driven Vascular Robot
Jiang Fan and Liu Zhenzhang
School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou, 510006, China
Research Journal of Applied Sciences, Engineering and Technology 2013 13:3508-3519
Received: June 13, 2012 | Accepted: July 04, 2012 | Published: April 15, 2013
Abstract
For driven and adjustment attitude shortcomings of the existing vascular robot, a jet-driven vascular robot is designed, consists of the upper and lower shell, micro-batteries, variable pump, radio control block, 12 suction nozzles, 24 2/2-way solenoid valves and operation mechanism. The propel force of jet-driven, pressure in elastic capsule, propulsive efficiency and other parameters of vascular robot are analyzed, the propulsive efficiency is 41.6% in initial calculation. The flow path control method of robot posture adjustment in vascular is obtained. CFD technology is used to analyze the flows with capsule contraction and expansion of variable pump and the external flow field characteristics of vascular robot under the moving mode and the posture adjustment. The results show that the contraction and expansion of the variable pump can jet and suck the fluid, to drive vascular robot go straight in blood vessel, in the same time, the pressure field and velocity field under condition of pitch and roll, is met to the movement trend of the robot correspondingly.
Keywords:
Dynamics mesh, jet-driven, numerical simulation, posture adjustment, propel force, variable pump, vascular robot,
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|