Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Designs and Implementations of Low-Leakage Digital Standard Cells Based on Gate-Length Biasing

Jindan Chen and Jianping Hu
Institute of Circuits and System, Ningbo University, Ningbo 315211, China
Research Journal of Applied Sciences, Engineering and Technology  2013  10:2957-2963
http://dx.doi.org/10.19026/rjaset.5.4606  |  © The Author(s) 2013
Received: September 15, 2012  |  Accepted: October 31, 2012  |  Published: March 25, 2013

Abstract

In this study, a minimum set of low-power digital standard cells for low-leakage applications are developed and introduced into SMIC (Semiconductor Manufacturing International Corporation) 130 nm CMOS libraries, which include basic logic gates such as inverter, NAND, NOR, XOR, XNOR and flip-flop. The inverter, NAND, NOR and flip-flop standard cells based on the gate-length biasing technique are proposed to achieve low Energy Delay Product (EDP). The XOR and XNOR standard cells are optimized based on transistor-level. All circuits are simulated with HSPICE at a SMIC 130nm CMOS technology by a 1.2V supply voltage. The proposed several standard cells attain large leakage reductions. A mode-10 counter is verified with the proposed standard cells by using commercial EDA tools. The leakage and total dynamic power dissipations of the mode-10 counter using the proposed standard cells provide a reduction of 21.27 and 3.06%, respectively. The results indicate the proposed standard cells are a good choose in low leakage applications.

Keywords:

Digital standard cells, gate-length biasing techniques integrated circuits, low-leakage designs,


References


Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved