Research Article | OPEN ACCESS
Designs and Implementations of Low-Leakage Digital Standard Cells Based on Gate-Length Biasing
Jindan Chen and Jianping Hu
Institute of Circuits and System, Ningbo University, Ningbo 315211, China
Research Journal of Applied Sciences, Engineering and Technology 2013 10:2957-2963
Received: September 15, 2012 | Accepted: October 31, 2012 | Published: March 25, 2013
Abstract
In this study, a minimum set of low-power digital standard cells for low-leakage applications are developed and introduced into SMIC (Semiconductor Manufacturing International Corporation) 130 nm CMOS libraries, which include basic logic gates such as inverter, NAND, NOR, XOR, XNOR and flip-flop. The inverter, NAND, NOR and flip-flop standard cells based on the gate-length biasing technique are proposed to achieve low Energy Delay Product (EDP). The XOR and XNOR standard cells are optimized based on transistor-level. All circuits are simulated with HSPICE at a SMIC 130nm CMOS technology by a 1.2V supply voltage. The proposed several standard cells attain large leakage reductions. A mode-10 counter is verified with the proposed standard cells by using commercial EDA tools. The leakage and total dynamic power dissipations of the mode-10 counter using the proposed standard cells provide a reduction of 21.27 and 3.06%, respectively. The results indicate the proposed standard cells are a good choose in low leakage applications.
Keywords:
Digital standard cells, gate-length biasing techniques integrated circuits, low-leakage designs,
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|